DOI QR코드

DOI QR Code

고품질 polysilicon/tunneling oxide 기반의 에미터 형성 공정에서의 Auger 재결합 조절 연구

Study on Auger Recombination Control using Barrier SiO2 in High-Quality Polysilicon/Tunneling oxide based Emitter Formation

  • 이희연 (신소재공학과, 고려대학교) ;
  • 홍수범 (에너지지스템공학과, 고려대학교) ;
  • 김동환 (신소재공학과, 고려대학교)
  • Huiyeon Lee (Department of Materials Science and Engineering, Korea University) ;
  • SuBeom Hong (Green School Graduate School of Energy and Environment (KU-KIST), Korea University) ;
  • Donghwan Kim (Department of Materials Science and Engineering, Korea University)
  • 투고 : 2024.03.12
  • 심사 : 2024.06.18
  • 발행 : 2024.06.30

초록

Passivating contacts are a promising technology for achieving high efficiency Si solar cells by reducing direct metal/Si contact. Among them, a polysilicon (poly-Si) based passivating contact solar cells achieve high passivation quality through a tunnel oxide (SiOx) and poly-Si. In poly-Si/SiOx based solar cells, the passivation quality depends on the amount of dopant in-diffused into the bulk-Si. Therefore, our study fabricated cells by inserting silicon oxide (SiO2) as a doping barrier before doping and analyzed the barrier effect of SiO2. In the experiments, p+ poly-Si was formed using spin on dopant (SOD) method, and samples ware fabricated by controlling formation conditions such as existence of doping barrier and poly-Si thickness. Completed samples were measured using quasi steady state photoconductance (QSSPC). Based on these results, it was confirmed that possibility of achieving high Voc by inserting a doping barrier even with thin poly-Si. In conclusion, an improvement in implied Voc of up to approximately 20 mV was achieved compared to results with thicker poly-Si results.

키워드

참고문헌

  1. C. Ballif, F.-J. Haug, M. Boccard, P. J. Verlinden, G. Hahn, Status and perspectives of crystalline silicon photovoltaics in research and industry. Nat. Rev. Mater. 7, 597-616 (2022).
  2. P.-J. Ribeyron, Crystalline silicon solar cells: Better than ever. Nat. Energy. 2, 1-2 (2017).
  3. W. Monch, Metal-semiconductor contacts: electronic properties. Surface Science. 299, 928-944 (1994).
  4. S. W. Glunz, F. Feldmann, SiO2 surface passivation layers-a key technology for silicon solar cells. Sol. Energy Mater. Sol. Cells. 185, 260-269, doi:10.1016/j.solmat.2018.04.029 (2018).
  5. M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, O. Oata, HITTM cells-high-efficiency crystalline Si cells with novel structure. Progress in photovoltaics: Research and applications. 8, 503-513 (2000).
  6. F. Feldmann, M. Bivour, C. Reichel, M. Hermle, S. W. Glunz, Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics. Sol. Energy Mater. Sol. Cells. 120, 270-274 (2014).
  7. U. Romer, R. Peibst, T. Ohrdes, B. Lim, J. Krugener, E. Bugiel, R. Brendel, Recombination behavior and contact resistance of n+  and p+  poly-crystalline Si/mono-crystalline Si junctions. Sol. Energy Mater. Sol. Cells. 131, 85-91 (2014).
  8. K. Yoshikawa, W. Yoshida, T. Irie, H. Kawasaki, K. Konishi, H. Ishibashi, K. Yamamoto, Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology. Sol. Energy Mater. Sol. Cells. 173, 37-42 (2017).
  9. M. Lu, K.Mikeska, R. K, C. Ni, Y. Whao, F. Chen, X. Xie, C. Zhang, in 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC). 0954-0957 (IEEE).
  10. M. Lu, K. Mikeska, R. K, C. Ni, Y. Whao, F. Chen, X. Xie, C. Zhang, Screen-Printable contacts for industrial N-TOPCon crystalline silicon solar cells. IEEE J. Photovolt. 12, 469-473 (2022).
  11. A. Richter, J. Benick, F. Feldmann, A. Rell, M. Hermle, W. S. Glunz, N-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation. Sol. Energy Mater. Sol. Cells. 173, 96-105 (2017).
  12. V. Shaw, Pv Magazine Home Page. Available online: https://www.pv-magazine.com/2021/05/03/longi-sets-topcon-cell-record-of-25-09/ (accessed on 23 November 2022).
  13. A. Richter, R. Muller, J. Benick, F. Feldmann, B. Steinhauser, C. Reichel, W. S. Glunz, Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses. Nat. Energy. 6, 429-438 (2021).
  14. D. K. Ghosh, S. Acharyya, S. Bose, G. Das, S. Mukhopadhyay, A. Sengupta, A detailed theoretical analysis of TOPCon/TOPCore solar cells based on p-type wafers and prognosticating the device performance on thinner wafers and different working temperatures. Silicon. 15, 7593-7607 (2023).
  15. A. Jain, W.-J. Choi, Y.-Y. Huang, B. Klein, A. Rohatgi, Design, optimization, and in-depth understanding of front and rear junction double-side passivated contacts solar cells. IEEE J. Photovolt. 11, 1141-1148 (2021).
  16. Y.-Y. Huang, A. Jain, W. J. Choi, K. Madani, Y. W. Ok, A. Rohatgi, in 2021 IEEE 48th Photovoltaic Specialists Conference (PVSC). 1971-1976 (IEEE).
  17. S. Reiter, N. Koper, R. Reineke-Koch, Y. Larionova, M. Turcu, J. Krugener, R. Peibst, Parasitic absorption in polycrystalline Si-layers for carrier-selective front junctions. Energy Procedia. 92, 199-204 (2016).
  18. S. Deng, Y. Cai, U. Roemer, F. J. Ma, F. Rougieux, J. Huang, N. Song, Mitigating parasitic absorption in Poly-Si contacts for TOPCon solar cells: A comprehensive review. Sol. Energy Mater. Sol. Cells. 267, 112704 (2024).
  19. Z. P. Ling, Z. Xin, P. Wang, R. Sridharan, C. Ke, R. Stangl, Double-sided passivated contacts for solar cell applications: An industrially viable approach toward 24% efficient large area silicon solar cells. Silicon Materials. 89 (2019).
  20. H. Park, S. Bae, S. J. Park, J. Y. Hyun, C. H. Lee, D. Choi, D. Kim, Role of polysilicon in poly-Si/SiOx passivating contacts for high-efficiency silicon solar cells. RSC Adv. 9,23261-23266, doi:10.1039/c9ra03560e (2019).
  21. H. Park, J. Kim, D. Choi, S. W. Lee, D. Kang, H. S. Lee, Y. Kang, Boron-doped polysilicon using spin-on doping for high-efficiency both-side passivating contact silicon solar cells. Progress in photovoltaics: Research and applications. 31, 461-473 (2023).
  22. W. L. Yang, C.-Y. Cheng, M. S. Tsai, D.-G. Liu, M.-S. Shieh, Retardation in the chemical-mechanical polish of the boron-doped polysilicon and silicon. IEEE Electron Device. Lett. 21, 218-220 (2000).