DOI QR코드

DOI QR Code

유기물 함유량에 따른 동토 시료의 열적·역학적 거동 평가를 위한 실험적 연구

Experimental Study to Evaluate Thermal and Mechanical Behaviors of Frozen Soils according to Organic Contents

  • 박상영 ;
  • 박현태 ;
  • 최항석 ;
  • 김영석 ;
  • 김세원
  • Sangyeong Park (School of Civil, Environmental, and Architectural Engineering, Korea University) ;
  • Hyeontae Park (School of Civil, Environmental, and Architectural Engineering, Korea University) ;
  • Hangseok Choi (School of Civil, Environmental, and Architectural Engineering, Korea University) ;
  • YoungSeok Kim (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Sewon Kim (Department of Geotechnical Engineering Research, Korea Institute of Civil Engineering and Building Technology)
  • 투고 : 2024.05.30
  • 심사 : 2024.06.14
  • 발행 : 2024.06.30

초록

최근 오일샌드와 같은 비전통에너지 개발이 활발히 이루어지고 있는 동토 지역은 지반의 유기물 함유량이 높아 일반적인 지반과 다른 열적·역학적 특성을 지니고 있다. 본 논문에서는 캐나다 앨버타주와 국내 강원도에서 채취한 동토 시료를 대상으로 다양한 실내시험을 통해 유기물 함유량이 토양의 열적 및 역학적 거동에 미치는 영향을 평가하였다. 유기물 함유량이 증가할수록 다짐시험에서 최대 건조단위중량은 감소하고 최적 함수비는 증가하는 경향이 나타났다. 동결 일축 압축시험에서는 동결온도가 낮아질수록 시료의 강도가 증가했으나, 모든 시료는 동결 조건에서 얼음 및 부동수분의 양에 따라 복잡한 거동을 보여 유기물 함유량이 강도에 큰 영향을 미치지 않았다. 열전도도 측정시험에서는 동결 조건에서 비동결 조건보다 열전도도가 더 크게 측정되었고, 이는 물보다 얼음의 열전도도가 더 크기 때문으로 판단된다. 또한, 유기물 함유량이 증가할수록 부동 수분량도 증가하는 경향이 나타났다. 이러한 결과는 극한지 건설 프로젝트에서 지반 공학적 설계 및 시공에 중요한 엔지니어링 기초 자료로 활용할 수 있을 것이다.

Recently, development of non-traditional energy such as oil sands has been actively conducted in the cold region such as Canada. Frozen soil has different thermal and mechanical characteristics from general soil due to its high organic contents. This study evaluated the impact of organic matter content on the thermal and mechanical behavior of frozen soil samples collected from Alberta, Canada, and Gangwon Province, South Korea. As the organic content increases, the maximum dry unit weight decreases and the optimum moisture content increases in compaction tests. In uniaxial compression tests under frozen conditions, the strength of the frozen specimens increased as the temperature decreased. The strength of Canada soil sample increased with higher organic matter content at low temperatures. However, the strength of frozen soil was not significantly affected by organic matter content due to the complex behavior and unfrozen water content. Thermal conductivity tests showed higher thermal conductivity in frozen conditions compared to unfrozen conditions, due to the higher thermal conductivity of ice compared to water. These findings provide essential data for geotechnical design and construction in large-scale projects such as oil sands development in cold regions. Further research is needed to explore the impact of organic matter content on different types of frozen soils.

키워드

과제정보

This research was supported by the grants from Ministry of Land Transportation Technology Business Support Program funded by Ministry of Land, Infrastructure and Transport of Korean government (Development of packaging design and integrated demonstration technology for oil production plant(RS-2022-00143644), Development of Deep Geological Formation Characteristic Evaluation Technologies and Optimal Design Technologies to Improve 10% of CO2 Injectivity for CO2 Geosequestration (RS-2024-00410248)).

참고문헌

  1. Adaptwest (2022), https://adaptwest.databasin.org.
  2. ASTM D2974, Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils.
  3. ASTM D4318, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils.
  4. Bonales, L. J., Rodriguez, A. C. and Sanz, P. D. (2017), "Thermal conductivity of ice prepared under different conditions", International Journal of Food Properties, Vol.20, pp.610-619.
  5. Chalmers, G. R. and Bustin, R. M. (2007), "The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada", International Journal of Coal Geology, Vol.70, No.1-3, pp.223-239.
  6. Hanes, C. C., Wotton, M., Woolford, D. G., David, L., and Flannigan, M., (2022), Douglas, G., "Mapping organic layer thickness and fuel load of the boreal forest in Alberta, Canada", Geoderma, Vol.417, p.115827.
  7. Hong, S. S. and Kim, Y. S. (2016), "Geotechnical Properties of Muskeg Soil for Construction Machinery Distributed in Oil-sand Areas", The KSFM Journal of Fluid Machinery, Vol.19, No.3, pp.29-32. (in Korean).
  8. Kim, D. (2008), "New energy repository, soil sand", Future Strategy & Business Department of Shinhan Bank, pp.34-37. (in Korean).
  9. Kim, H. S. and Kim, K. H. (2011), "Physical Properties of the Horticultural Substrate According to Mixing Ratio of Peatmoss, Perlite and Vermiculite", Korean Journal of Soil Science and Fertilizer, Vol.44, No.3, pp.321-330. (in Korean).
  10. Kim, S. W., Choi, H. J., Yang, B. Y. and Kim, Y. S. (2023), "Development of a Site Suitability Evaluation Model for Arctic-Circle Energy Resource Construction", Journal of the Korean Geosynthetics Society, Vol.22, No.3, pp.105-117. (in Korean).
  11. Kim, S. W., Park, S. Y., Won, J. M. and Kim, Y. S. (2022), "Experimental Study for Thermal Characteristics of Frozen Soil Samples", Journal of the Korean Geosynthetics Society, Vol.21, No.4, pp.31-40. (in Korean).
  12. Kim, S. Y., Lee, J. S., Kim, Y. S. and Byun, Y. H. (2015), "Evaluation of the Shear Strength and Stiffness of Frozen Soil with a Low Water Content", The Journal of Engineering Geology, Vol.25, No.1, pp.93-102. (in Korean).
  13. KS F 2312, Test method for soil compaction in laboratory.
  14. Kwon, H. J., Yi, G. J., Lee, W. T. and Park, J. (1997), "Compaction Characteristics of Soil Mixed with Organic Material", Journal of the Korean Society of Civil Engineers, Vol.3, pp.193-196. (in Korean).
  15. Mabit, L. and Bernard, C. (2010), "Spatial distribution and content of soil organic matter in an agricultural field in eastern Canada, as estimated from geostatistical tools", Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, Vol.35, No.3, pp.278-283.
  16. Mesri, G. and Godlewski, P. M. (1977), "Time-and stress-compressibility interrelationship", Journal of the Geotechnical Engineering Division, Vol.103, No.5, pp.417-430.
  17. National Institute of Agricultural Sciences (2010), "Methods of soil chemical analysis", Rural Development Administration.
  18. Oh, M. (2015), Geothermal chamber test and numerical study for applying the artificial ground freezing method in subsea tunnelling construction, M.S. Thesis, Korea University. (in Korean).
  19. Ozden, Z. S. (1970), "Shear strength characteristics and structure of organic soils", In Proceedings of 13th Muskeg Research Conference, pp.8-26.
  20. Park, H. G. and Koo, J. M. (2001), "A study on the engineering characteristics of yang-dong organic soils", Journal of the Korean GEO-environmental Society, Vol.2, No.1, pp.23-30. (in Korean).
  21. Park, P. Y. and Kwon, H. J. (2008), "Compaction Characteristics of Weathered Soil Mixed with Organic Material", Korean Geotechnical Society Spring National Conference, Gwangju, Korea, pp.10-11. (in Korean).
  22. Ramires, M. L., Nieto de Castro, C. A., Nagasaka, Y., Nagashima, A., Assael, M. J. and Wakeham, W. A. (1995), "Standard reference data for the thermal conductivity of water", Journal of Physical and Chemical Reference Data, Vol.24, No.3, pp.1377-1382.
  23. Topp, G. C., Davis, J. L. and Annan, A. P. (1980), "Electromagnetic determination of soil water content: Measurements in coaxial transmission lines", Water Resources Research, Vol.16, No.3, pp.574-582.
  24. Uno, Y., Prasher, S. O., Patel, R. M., Strachan, I. B., Pattey, E. and Karimi, Y. (2005), "Development of field-scale soil organic matter content estimation models in Eastern Canada using airborne hyperspectral imagery", Canadian Biosystems Engineering, Vol.47, No.1.9, pp.1-14.