DOI QR코드

DOI QR Code

실내 다짐시험을 통한 유기물 함량에 따른 저온 다짐 특성 분석

Evaluation of Low-temperature Compaction Characteristics According to Organic Matter Content through Laboratory Compaction Tests

  • 최현준 (한국건설기술연구원 북방인프라특화팀) ;
  • 김세원 (한국건설기술연구원 지반연구본부) ;
  • 이승주 (한국건설기술연구원 남북한인프라특별위원회) ;
  • 박현태 (고려대학교 건축사회환경공학과) ;
  • 최항석 (고려대학교 건축사회환경공학과) ;
  • 김영석 (한국건설기술연구원 북방인프라특화팀)
  • Choi, Hyun-Jun (Northern Infrastructure Specialized Team, Korea Institute of Civil Engrg. and Building Technology, KICT) ;
  • Kim, Sewon (Department of Geotechnical Engineering, KICT) ;
  • Lee, Seungjoo (Korean Peninsula Infrastructure Special Committee, KICT) ;
  • Park, Hyeontae (School of Civil, Environmental and Architectural Engineering, Korea Univ.) ;
  • Choi, Hangseok (School of Civil, Environmental and Architectural Engineering, Korea Univ.) ;
  • Kim, YoungSeok (Northern Infrastructure Specialized Team, KICT)
  • 투고 : 2024.06.11
  • 심사 : 2024.06.12
  • 발행 : 2024.06.30

초록

저온 다짐의 경우 간극수 동결이 발생되어 상온에서의 다짐 특성과 상이한 양상이 발생된다. 특히, 캐나다 알버타주와 같이 유기질토가 많이 분포되어 있는 지역에서는 보수성과 압축성이 크고 동결·융해에 민감한 유기질토의 특성에 따라 유기물 함량이 다짐 성능에 주요한 영향을 미친다. 알버타주는 환경규제로 인하여 굴착토를 활용하여 되메움을 수행해야 하며 고위도에 위치하는 지리적인 특성으로 동절기가 길어 건설공사를 진행하기에 불리한 조건을 가지고 있다. 본 논문에서는 유기질토의 유기질 함량에 따른 저온 다짐 특성을 평가하기 위하여 실내 다짐시험을 수행하였다. 실험 결과, 유기질 함량이 증가할수록 최적함수비가 증가하였고 최대건조단위중량이 최대 21.9% 만큼 감소되었다. 또한, -4℃ 이하의 온도조건에서는 최적함수비가 나타나지 않고 함수비가 증가할수록 건조단위중량이 감소하는 것으로 분석되었다.

Pore water freezes in low-temperature compaction, which leads to different compaction characteristics compared to room temperature conditions. In regions like Alberta, Canada, where organic soils are prevalent, compaction performance is influenced by the high water retention and compressibility of organic soils, as well as their sensitivity to freezing and thawing. Alberta's strict environmental regulations demand the reuse of excavated soil for backfill, and the long winter season creates challenging conditions for civil engineering projects. In this study, a laboratory compaction test was conducted to evaluate the low-temperature compaction characteristics of organic soils with varying organic content. The results indicate that the optimum moisture content increases as the organic content increases, and the maximum dry unit weight decreases by up to 21.9%. In addition, under temperature conditions below -4℃, no optimum moisture content was observed, and the dry unit weight decreased as the moisture content increased.

키워드

과제정보

본 논문은 2024년 국토교통부의 재원으로 국토교통과학기술진흥원의 지원을 받아 수행된 연구임(RS-2022-00143644, 오일 생산플랜트의 패키지화 설계 및 통합실증 기술개발).

참고문헌

  1. ASTM International (2021), "Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Modified Effort (ASTM D1557)", ASTM International, West Conshohocken, PA.
  2. Baek, S., Yun, S., Park, J., and Yu C. (2007), "Characteristic of Compaction and Permeability of Soils with the Variation of Particle Distribution and Compaction Energy", Journal of Agriculture & Life Science, Vol.41, No.2, pp.45-50. (in Korean)
  3. Choi, I. (1995), A study on engineering characteristics for organic soil in Sam-Cheok, Master thesis, Dongguk University. (in Korean)
  4. Haas, W. M. (1988), "Construction Materials and Field Placement", Embankment design and construction in cold regions, ASCE, New York, pp.114-126.
  5. Heiner, A. (1972), "Strength and Compaction Properties of Frozen Soil", National swedish institute for building research, Sweden, Doc.11, pp.71.
  6. Highter, J. A., Altachaeffl, A. G., and Lovell, C. W. (1970), "Low Temperature Effects on the Compaction and Strength of Sandy Clay", Highway Research Record, 304, Washington, USA, pp. 45-51.
  7. Hu, Z., Zhang, J., Zhang, Z., Zhang, M., and Cao, W. (2020), "Variation behavior of Pore-water Pressure in Warm Frozen Soil under Load and its Relation to Deformation", Acta Geotechnica, Vol.15, pp.603-614. https://doi.org/10.1007/s11440-018-0736-4
  8. Hwang, S. and Oh, B. (2005), "The Compaction Characteristics Analysis of Domestic River Sands", International Journal of Highway Engineering, Vol.7, No.4, pp.31-39.
  9. Johnson, A. W. and Sallberg, J. R. (1962), "Factors Influencing Compaction Test Results", Highway Reseach Board Bulletin, 319, Washington, USA, pp.1-148.
  10. Kang, J., Lee, J., Lee, J., and Kim , Y. (2013), "Analysis of the Relationship between Unconfined Compression Strength and Shear Strength of Frozen Soils", Journal of Korean Geosynthetics Society, Vol.12, No.3, pp.23-29. (in Korean) https://doi.org/10.12814/jkgss.2013.12.3.023
  11. Kim, S., Hong, W., Hong, S., Baek, Y., and Lee, J. (2016), "Unfrozen Water Content and Unconfined Compressive Strength of Frozen Soils according to Degree of Saturations and Silt Fractions", Journal of the Korean Geotechnical Society, Vol.32, No.12, pp.59-67. https://doi.org/10.7843/kgs.2016.32.12.59
  12. Kim, S., Kim, Y., and Lee, J. (2021), "Effects of Frozen Water Content and Silt Fraction on Unconfined Compressive behavior of Fill Materials", Construction and Building Materials, Vol.266, 120912.
  13. Lee, J., Yu, J., Han, K., and Kim , S. (2020), "Strength Characteristics of Sand-silt Mixtures Subjected to Cyclic Freezing-thawingrepetitive Loading", Sensors, Vol.20, No.18, 5381.
  14. Lee, P. Y. and Suedkamp, R. J. (1972), "Characteristics of Irregularly Shaped Compaction Curves of Soils", Highway Research Record, 381, Washington, USA, pp.1-9.
  15. Lee, S., Kim, J., and Jeong, S. (2016), "Analysis of the Organic Matter Content for Soil Samples Taken at the New Points of Korea Soil Quality Monitoring Network", Journal of Korean Society of Environmental Engineers, Vol.38, No.12, pp.641-646. (in Korean) https://doi.org/10.4491/KSEE.2016.38.12.641
  16. Mesri, G. and Godlewski, P. (1977), "Time and Stress-compressibility Interrelationship", ASCE J. Geotech. Eng. Div., Vol.103, No.5, pp.417-430. https://doi.org/10.1061/AJGEB6.0000421
  17. Park, P. (2009), Compaction characteristics of weathered soil and Kaolinite mixed with organic material, Master thesis, Gwangju University. (in Korean)
  18. Park, S., Choi, S., and Ryu, J. (2013), "A study on the Measurement of Moisture Content in the Organic Soils", Journal of the Korean Geotechnical Society, Vol.29, No.10, pp.29-37. (in Korean) https://doi.org/10.7843/kgs.2013.29.10.29
  19. Park, S., Jung, S., Hwang, C., and Choi, H. (2022), "Evaluation of the Mechanical Characteristics of Frozen Sand, Considering Temperature and Confining Pressure Effects, in a Cryogenic Triaxial Compression Test", Journal of the Korean Geotechnical Society, Vol.38, No.8, pp.7-15. (in Korean) https://doi.org/10.7843/KGS.2022.38.8.7
  20. Shin, B., Bae, W., An, B., and Shin, J. (2000), "The Consolidation Characteristics of Refuse Landfill Site due to Organic Contents Variation", Journal of the Institute of Construction Technology, Vol.19, No.2, pp.69-78. (in Korean)
  21. Wang, X., Wang, J., and Zhang, J. (2012), "Comparisons of Three Methods for Organic and Inorganic Carbon in Calcareous Soils of Northwestern China", PLOS ONE, Vol.7, No.8, pp.1-6.
  22. Zou, Y., Jiang, H., Wang, E., Liu, X., and Du, S. (2023), "Variation and Prediction of Unfrozen Water Content in Different Soils at Extremely Low Temperature Conditions", Journal of Hydrology, Vol.624, 129900.