References
- Ali, J., Khan, R., & Ahmad, N. (2012). Random forests and decision trees. International Journal of Computer Science Issues, 9(5). Retrieved from https://www.uetpeshawar.edu.pk/TRP-G/Dr.Nasir-AhmadTRP/Journals/2012/Random%20Forests%20and%20Decision%20Trees.pdf
- Baradaran Rezaei, H., Amjadian, A., Sebt, M. V., et al. (2023). An ensemble method of the machine learning to prognosticate the gastric cancer. Annals of Operations Research, 328, 151-192. https://doi.org/10.1007/s10479-022-04964-1
- Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning Research, 13(Feb), 281-305. Retrieved from https://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a.pdf
- BigOmics Analytics. (2023, March 16). What is TPM? Understanding normalization methods for gene expression. BigOmics Analytics. Retrieved from https://bigomics.ch/blog/why-how-normalize-rna-seq-data/
- Boateng, E., & Abaye, D. (2019). A review of the logistic regression model with emphasis on medical research. Journal of Data Analysis and Information Processing, 7, 190-207. doi: 10.4236/jdaip.2019.74012.
- Bostanci, E., Kocak, E., Unal, M., Guzel, M. S., Acici, K., & Asuroglu, T. (2023). Machine learning analysis of RNA-seq data for diagnostic and prognostic prediction of colon cancer. Sensors, 23(6), 3080. https://doi.org/10.3390/s23063080
- Brown, K., Filuta, A., Ludwig, M. G., Seuwen, K., & Jaros, J. (2017). Epithelial Gpr116 regulates pulmonary alveolar homeostasis via Gq/11 signaling. JCI Insight, 2(11), e89704. https://doi.org/10.1172/jci.insight.89704
- Czepiel, S. A. (2002). Maximum likelihood estimation of logistic regression models: Theory and implementation. Available at czep.net/stat/mlelr.pdf
- Ergin, S., Kherad, N., & Alagoz, M. (2022). RNA sequencing and its applications in cancer and rare diseases. Molecular Biology Reports, 49, 2325-2333. https://doi.org/10.1007/s11033-021-06963-0
- Gad, A. A., & Balenga, N. (2020). The emerging role of adhesion GPCRs in cancer. ACS Pharmacology & Translational Science. https://doi.org/10.1021/acsptsci.9b00093
- Gohiya, H., Lohiya, H., & Patidar, K. (2018). A survey of XGBoost system. International Journal of Advanced Technology and Engineering Research, 8(7). Retrieved from http://www.ijater.com/Files/aa09b180-add4-4a6d-b234-bc122eb305d4_IJATER_39_07.pdf
- Handoyo, S., Pradianti, N., Nugroho, W. H., & Akri, Y. J. (2022). A heuristic feature selection in logistic regression modeling with newton raphson and gradient descent algorithm. International Journal of Advanced Computer Science and Applications, 13(3).
- Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30. Retrieved from https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html
- Li, K., Chen, Y., Sun, R., Yu, B., Li, G., & Jiang, X. (2020). Exploring potential of different X-ray imaging methods for early-stage lung cancer detection. Journal of Medical Imaging and Radiation Sciences, 5(2), 173-183. https://dx.doi.org/10.1007/s41605-020-00173-1
- Li, W., Yin, Y., Quan, X., & Zhang, H. (2019). Gene expression value prediction based on XGBoost algorithm. Frontiers in Genetics. Retrieved from https://www.frontiersin.org/articles/10.3389/fgene.2019.01077/full
- Louppe, G. (2014). Understanding random forests: From theory to practice. Cornell University Library. Retrieved from https://www.researchgate.net/profile/GillesLouppe/publication/264312332_Understanding-RandomForests_From-Theory-toPractice/links/54ae38ea0cf2213c5fe427b7/UnderstandingRandom-Forests-From-Theory-to-Practice.pdf
- Midthun, D. E. (2016). Early detection of lung cancer. F1000Research, 5, F1000 Faculty Rev-739. https://doi.org/10.12688/f1000research.7313.1
- Napierala, M. A. (2012). What is the Bonferroni correction?, AAOS Now, 40. Retrieved from https://link.gale.com/apps/doc/A288979427/HRCA?u=anon~94f28a3d&sid=googleScholar&xid=d9841e38
- Nooreldeen, R., & Bach, H. (2021). Current and future development in lung cancer diagnosis. International Journal of Molecular Sciences, 22(16), 8661. https://doi.org/10.3390/ijms22168661
- Park, S.-K., Kim, S., Lee, G.-Y., Kim, S.-Y., Kim, W., Lee, C.-W., Park, J.-L., Choi, C.-H., Kang, S-B., & Kim, T.-O., et al. (2021). Development of a machine learning model to distinguish between ulcerative colitis and Crohn's disease using RNA sequencing data. Diagnostics, 11(12), 2365. https://doi.org/10.3390/diagnostics11122365
- Piao, Y., Choi, N. H., Li, M., Piao, M., & Ryu, K. H. (2014). Ensemble method for prediction of prostate cancer from RNA-Seq data. Science Technology, 51-56.
- Roderburg, C., Loosen, S. H., & Hippe, H. J. (2022). Pulmonary hypertension is associated with an increased incidence of cancer diagnoses. Pulmonary Circulation, 12(1), e12000. https://doi.org/10.1002/pul2.12000
- World Health Organization. (2020). Global Cancer Observatory: Cancer today. International Agency for Research on Cancer. Available from https://gco.iarc.fr/today/data/factsheets/cancers/15-Lungfact-sheet.pdf
- Witten, D., & Tibshirani, R. (2007). A comparison of fold-change and the t-statistic for microarray data analysis. Analysis, 1776, 58-85.
- Yadav, S., & Shukla, S. (2016). Analysis of k-fold cross-validation over hold-out validation on colossal datasets for quality classification. 2016 IEEE 6th International Conference on Advanced Computing (IACC), 78-83. doi: 10.1109/IACC.2016.25
- Zappa, C., & Mousa, S. A. (2016). Non-small cell lung cancer: Current treatment and future advances. Translational Lung Cancer Research, 5(3), 288-300. https://doi.org/10.21037/tlcr.2016.06.07
- Zhang, L., Geisler, T., Ray, H., & Xie, Y. (2022). Improving logistic regression on the imbalanced data by a novel penalized log-likelihood function. Journal of Applied Statistics, 49(13), 3257-3277. https://doi.org/10.1080/02664763.2021.1939662