과제정보
National Nature Science Foundation of China (Grant No. 61805144, 61875125, 61775140 and 61405115); Natural Science Foundation of Shanghai (Grant No. 18ZR1425800).
참고문헌
- B. L. Ellerbroek, "First-order performance evaluation of adaptive-optics systems for atmospheric-turbulence compensation in extended-field-of-view astronomical telescopes," J. Opt. Soc. Am. A 11, 783-805 (1994). https://doi.org/10.1364/JOSAA.11.000783
- J. Zhang and X. Zhou, "Research on feature recognition algorithm for space target," Proc. SPIE 6786, 678616 (2007).
- P.-A. Moreau, E. Toninelli, T. Gregory, and M. J. Padgett, "Ghost imaging using optical correlations," Laser Photonics Rev. 12, 1700143 (2018).
- C. P. Lau, Y. H. Lai, and L. M. Lui, "Restoration of atmospheric turbulence-distorted images via RPCA and quasiconformal maps," Inverse Probl. 35, 074002 (2019).
- X. Zhu and P. Milanfar, "Removing atmospheric turbulence via space-invariant deconvolution," IEEE Trans. Pattern Anal. Mach. Intell. 35, 157-170 (2013). https://doi.org/10.1109/TPAMI.2012.82
- C. P. Lau, Y. H. Lai, and L. M. Lui, "Variational models for joint subsampling and reconstruction of turbulence-degraded images," J. Sci. Comput. 78, 1488-1525 (2019). https://doi.org/10.1007/s10915-018-0833-4
- C. P. Lau, C. D. Castillo, and R. Chellappa, "ATFaceGAN: Single face semantic aware image restoration and recognition from atmospheric turbulence," IEEE Trans. Biom. Behav. Identity Sci. 3, 240-251 (2021). https://doi.org/10.1109/TBIOM.2021.3058316
- D. Jin, Y. Chen, Y. Lu, J. Chen, P. Wang, Z. Liu, S. Guo, and X. Bai, "Neutralizing the impact of atmospheric turbulence on complex scene imaging via deep learning," Nat. Mach. Intell. 3, 876-884 (2021). https://doi.org/10.1038/s42256-021-00392-1
- S. N. Rai and C. V. Jawahar, "Removing atmospheric turbulence via deep adversarial learning," IEEE Trans. Image Process. 31, 2633-2646 (2022). https://doi.org/10.1109/TIP.2022.3158547
- Y. Xie, W. Zhang, D. Tao, W. Hu, Y. Qu, and H. Wang, "Removing turbulence effect via hybrid total variation and deformation-guided kernel regression," IEEE Trans. Image Process. 25, 4943-4958 (2016). https://doi.org/10.1109/TIP.2016.2598638
- N. Chimitt and S. H. Chan, "Simulating anisoplanatic turbulence by sampling intermodal and spatially correlated Zernike coefficients," Opt. Eng. 59, 083101 (2020).
- S. Basu, J. E. McCrae, and S. T. Fiorino, "Estimation of the path-averaged atmospheric refractive index structure constant from time-lapse imagery," Proc. SPIE 9465, 94650T (2015).
- G. A. Chanan, "Calculation of wave-front tilt correlations associated with atmospheric turbulence," J. Opt. Soc. Am. A 9, 298-301 (1992). https://doi.org/10.1364/JOSAA.9.000298
- B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, "Places: A 10 million image database for scene recognition," IEEE Trans. Pattern Anal. Mach. Intell. 40, 1452-1464 (2018). https://doi.org/10.1109/TPAMI.2017.2723009
- N. Anantrasirichar and D. Bull, "BVI-CLEAR," (University of Bristol, Published date: Apr 11, 2022), https://doi.org/10.5523/bris.1yh1e51t7tg2g2q9cwv96sdfc2 (Accessed date: May 11, 2023).
- S.-J. Cho, S.-W. Ji, J.-P. Hong, S.-W. Jung, and S.-J. Ko, "Rethinking coarse-to-fine approach in single image deblurring," in Proc. IEEE/CVF International Conference on Computer Vision (Montreal, QC, Canada, Oct. 10-17, 2021), pp. 4621-4630.
- Y. Zhang, Y. Tian, Y. Kong, B. Zhong, and Y. Fu, "Residual dense network for image super-resolution," in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (Salt Lake City, UT, USA, Jun. 18-23, 2018), pp. 2472-2481.
- J. Cao, Y. Li, M. Sun, Y. Chen, D. Lischinski, D. Cohen-Or, B. Chen, and C. Tu, "DO-conv: Depthwise over-parameterized convolutional layer," IEEE Trans. Image Process. 31, 3726-3736 (2022). https://doi.org/10.1109/TIP.2022.3175432
- S. Liu, D. Huang, and Y. Wang, "Learning Spatial fusion for single-shot object detection," arXiv:1911.09516 (2019).
- Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo, "Swin transformer: Hierarchical vision transformer using shifted windows," in Proc. IEEE/CVF International Conference on Computer Vision (Montreal, QC, Canada, Oct. 10-17, 2021), pp. 9992-10002.
- S. W. Zamir, A. Arora, S. Khan, M. Hayat, F. S. Khan, M.-H. Yang, and L. Shao, "Multi-Stage Progressive Image Restoration," in Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition (Nashville, TN, USA, Jun. 20-25, 2021), pp. 14816-14826.
- D. P. Kingma and J. Ba, "Adam: A method for stochastic optimization," arXiv:1608.03983 (2014).
- I. Loshchilov and F. Hutter, "SGDR: Stochastic gradient descent with warm restarts," arXiv:1608.03983 (2016).
- H. R. Sheikh, A. C. Bovik, and G. de Veciana, "An information fidelity criterion for image quality assessment using natural scene statistics," IEEE Trans. Image Process. 14, 2117-2128 (2005). https://doi.org/10.1109/TIP.2005.859389
- L. Zhang, L. Zhang, X. Mou, and D. Zhang, "FSIM: A feature similarity index for image quality assessment," IEEE Trans. Image Process. 20, 2378-2386 (2011). https://doi.org/10.1109/TIP.2011.2109730
- Z. Mao, N. Chimitt, and S. H. Chan, "Image reconstruction of static and dynamic scenes through anisoplanatic turbulence," IEEE Trans. Comput. Imaging 6, 1415-1428 (2020). https://doi.org/10.1109/TCI.2020.3029401
- C.-M. Fan, T.-J. Liu, and K.-H. Liu, "Compound multi-branch feature fusion for real image restoration," arXiv:2206.02748 (2022).