Acknowledgement
Authors are thankful to the reviewers for giving valuable suggestions to improve the paper in the present form.
References
- R. P. Agarwal, A. Kilicman, R. K. Parmar, and A. K. Rathie, Certain generalized fractional calculus formulas and integral transforms involving (p, q)-Mathieu-type series, Adv. Differ. Equ. 221 (2019), 1-11.
- A. Baricz, S. R. Mondal, and A. Swaminathan, Monotonicity properties of the Bessel-Struve kernel, Bull. Korean Math. Soc. 53 (2016), 1845-1856. https://doi.org/10.4134/BKMS.b151021
- B. C. Carlson, Special Functions of Applied Mathematics, Academic Press, New York, 1977.
- M. A. Chaudhry and S. M. Zubair, On a Class of Incomplete Gamma Functions with Applications, CRC Press (Chapman and Hall), Boca Raton, FL, 2002.
- M. A. Chaudhry, A. Qadir, M. Rafique and S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math. 78 (1997), 19-32. https://doi.org/10.1016/S0377-0427(96)00102-1
- M. A. Chaudhry, A. Qadir, H. M. Srivastava, and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput. 159 (2004), 589-602. https://doi.org/10.1016/j.amc.2003.09.017
- J. Choi and R. K. Parmar, Fractional Integration And Differentiation of the (p, q)-extended Bessel function, Bull. Korean Math. Soc. 55 (2018), no. 2, 599-610.
- J. Choi and R. K. Parmar, Fractional calculus of the (p, q)-extended Struve function, Far East Journal of Mathematical Sciences 103 (2018), no. 2, 541-559.
- J. Choi, R. K. Parmar, and T. K. Pogany, Mathieu-type series built by (p, q)-extended Gaussian hypergeometric function, Bull. Korean Math. Soc. 54 (2017), no. 3, 789-797. https://doi.org/10.4134/BKMS.b160313
- J. Choi, A. K. Rathie, and R. K. Parmar, Extension of extended betahypergeometric and confluent hypergeometric functions, Honam Mathematical J. 36 (2014), no. 2, 339-367. https://doi.org/10.5831/HMJ.2014.36.2.339
- L. Debnath and D. Bhatta, Integral Transforms and Their Applications, Third edition, Chapman and Hall (CRC Press), Taylor and Francis Group, London and New York, 2014.
- A. Gasmi and M. Sifi, The Bessel-Struve intertwining operator on C and mean-periodic functions, Int. J. Math. Math. Sci. 57-60 (2004), 3171-3185.
- A. Gasmi and F. Soltani, Fock spaces for the Bessel-Struve kernel, J. Anal. Appl. 3 (2005), 91-106.
- M. J. Luo, R. K. Parmar, and R. K. Raina, On extended Hurwitz-Lerch zeta function, J. Math. Anal. Appl. 448 (2017), 1281-1304. https://doi.org/10.1016/j.jmaa.2016.11.046
- D. J. Masirevic, R. K. Parmar, and T. K. Pogany, (p, q)-extended Bessel and modified Bessel functions of the first kind, Results in Mathematics, 72 (2017), 617-632. https://doi.org/10.1007/s00025-016-0649-1
- F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C.W.C (eds.), NIST Handbook of Mathematical Functions, Cambridge: Cambridge University Press, 2010.
- R. K. Parmar and T. K. Pogany, On Mathieu-type series for the unified Gaussian hypergeometric functions, Appl. Anal. Discrete Math. 14 (2020), 138-149. https://doi.org/10.2298/AADM190525014P
- R. K. Parmar and R. K. Raina, On a certain extension of the Hurwitz-Lerch Zeta function, Ann. West Univ. Timisoara-Math. Computer Sci. 52 (2014), 157-170.
- R. K. Parmar, J. Choi, and S. D. Purohit, Further Generalization of the Extended Hurwitz-Lerch Zeta Function, Bol. Soc. Paran. Mat. 37 (2019), no. 1, 177-190.
- R. K. Parmar, P. Chopra, and R. B. Paris, On an extension of extended beta and hypergeometric functions, Journal of Classical Analysis, 11 (2017), no. 2, 91-106.
- R. K. Parmar, V.G. Milovanovic, and T. K. Pogany, Multi-parameter Mathieu, and alternating Mathieu series, Appl. Math. Comput. 400 (2021), 126099.
- R. K. Parmar, T. K. Pogany, and R. K. Saxena, On properties and applications of (p, q)-extended τ-hypergeometric functions, Comptes Rendus. Mathematique. 356 (2018), no. 3, 278-282. https://doi.org/10.1016/j.crma.2017.12.014
- R. K. Parmar and T. K. Pogany, Extended Srivastava's triple hypergeometric HA,p,q function and related bounding inequalities, J. Contemp. Math. Anal. 52 (2017), no. 6, 261-272. https://doi.org/10.3103/S1068362317060012
- R. K. Parmar and T. K. Pogany, On (p, q)-Extension of Further Members of Bessel-Struve Functions Class, Miskolc Mathematical Notes 20 (2019), 451-463. https://doi.org/10.18514/MMN.2019.2608
- E. D. Rainville, Special Functions, Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.
- L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, London, New York, 1966.
- E. W. Weisstein, Holder's Inequalities, MathWorld- A Wolfarm Web Resource. https://mathworld.wolfarm.com/HolderInequalities.html.
- X. Yang, Theory and Applications of Special Functions for Scientists and Engineers, 272-273, Springer Singapore, 2022.