DOI QR코드

DOI QR Code

ON GENERALIZED EXTENDED BETA AND HYPERGEOMETRIC FUNCTIONS

  • Shoukat Ali (Department of Mathematics, Government Engineering College Bikaner) ;
  • Naresh Kumar Regar (Department of Mathematics, Government Engineering College Bikaner) ;
  • Subrat Parida (Department of Mathematics, Ramanujan School of Mathematical Sciences, Pondicherry University-A Central University)
  • Received : 2023.12.03
  • Accepted : 2024.01.13
  • Published : 2024.06.25

Abstract

In the current study, our aim is to define new generalized extended beta and hypergeometric types of functions. Next, we methodically determine several integral representations, Mellin transforms, summation formulas, and recurrence relations. Moreover, we provide log-convexity, Turán type inequality for the generalized extended beta function and differentiation formulas, transformation formulas, differential and difference relations for the generalized extended hypergeometric type functions. Also, we additionally suggest a generating function. Further, we provide the generalized extended beta distribution by making use of the generalized extended beta function as an application to statistics and obtaining variance, coefficient of variation, moment generating function, characteristic function, cumulative distribution function, and cumulative distribution function's complement.

Keywords

Acknowledgement

Authors are thankful to the reviewers for giving valuable suggestions to improve the paper in the present form.

References

  1. R. P. Agarwal, A. Kilicman, R. K. Parmar, and A. K. Rathie, Certain generalized fractional calculus formulas and integral transforms involving (p, q)-Mathieu-type series, Adv. Differ. Equ. 221 (2019), 1-11.
  2. A. Baricz, S. R. Mondal, and A. Swaminathan, Monotonicity properties of the Bessel-Struve kernel, Bull. Korean Math. Soc. 53 (2016), 1845-1856. https://doi.org/10.4134/BKMS.b151021
  3. B. C. Carlson, Special Functions of Applied Mathematics, Academic Press, New York, 1977.
  4. M. A. Chaudhry and S. M. Zubair, On a Class of Incomplete Gamma Functions with Applications, CRC Press (Chapman and Hall), Boca Raton, FL, 2002.
  5. M. A. Chaudhry, A. Qadir, M. Rafique and S. M. Zubair, Extension of Euler's beta function, J. Comput. Appl. Math. 78 (1997), 19-32. https://doi.org/10.1016/S0377-0427(96)00102-1
  6. M. A. Chaudhry, A. Qadir, H. M. Srivastava, and R. B. Paris, Extended hypergeometric and confluent hypergeometric functions, Appl. Math. Comput. 159 (2004), 589-602. https://doi.org/10.1016/j.amc.2003.09.017
  7. J. Choi and R. K. Parmar, Fractional Integration And Differentiation of the (p, q)-extended Bessel function, Bull. Korean Math. Soc. 55 (2018), no. 2, 599-610.
  8. J. Choi and R. K. Parmar, Fractional calculus of the (p, q)-extended Struve function, Far East Journal of Mathematical Sciences 103 (2018), no. 2, 541-559.
  9. J. Choi, R. K. Parmar, and T. K. Pogany, Mathieu-type series built by (p, q)-extended Gaussian hypergeometric function, Bull. Korean Math. Soc. 54 (2017), no. 3, 789-797. https://doi.org/10.4134/BKMS.b160313
  10. J. Choi, A. K. Rathie, and R. K. Parmar, Extension of extended betahypergeometric and confluent hypergeometric functions, Honam Mathematical J. 36 (2014), no. 2, 339-367. https://doi.org/10.5831/HMJ.2014.36.2.339
  11. L. Debnath and D. Bhatta, Integral Transforms and Their Applications, Third edition, Chapman and Hall (CRC Press), Taylor and Francis Group, London and New York, 2014.
  12. A. Gasmi and M. Sifi, The Bessel-Struve intertwining operator on C and mean-periodic functions, Int. J. Math. Math. Sci. 57-60 (2004), 3171-3185.
  13. A. Gasmi and F. Soltani, Fock spaces for the Bessel-Struve kernel, J. Anal. Appl. 3 (2005), 91-106.
  14. M. J. Luo, R. K. Parmar, and R. K. Raina, On extended Hurwitz-Lerch zeta function, J. Math. Anal. Appl. 448 (2017), 1281-1304. https://doi.org/10.1016/j.jmaa.2016.11.046
  15. D. J. Masirevic, R. K. Parmar, and T. K. Pogany, (p, q)-extended Bessel and modified Bessel functions of the first kind, Results in Mathematics, 72 (2017), 617-632. https://doi.org/10.1007/s00025-016-0649-1
  16. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C.W.C (eds.), NIST Handbook of Mathematical Functions, Cambridge: Cambridge University Press, 2010.
  17. R. K. Parmar and T. K. Pogany, On Mathieu-type series for the unified Gaussian hypergeometric functions, Appl. Anal. Discrete Math. 14 (2020), 138-149. https://doi.org/10.2298/AADM190525014P
  18. R. K. Parmar and R. K. Raina, On a certain extension of the Hurwitz-Lerch Zeta function, Ann. West Univ. Timisoara-Math. Computer Sci. 52 (2014), 157-170.
  19. R. K. Parmar, J. Choi, and S. D. Purohit, Further Generalization of the Extended Hurwitz-Lerch Zeta Function, Bol. Soc. Paran. Mat. 37 (2019), no. 1, 177-190.
  20. R. K. Parmar, P. Chopra, and R. B. Paris, On an extension of extended beta and hypergeometric functions, Journal of Classical Analysis, 11 (2017), no. 2, 91-106.
  21. R. K. Parmar, V.G. Milovanovic, and T. K. Pogany, Multi-parameter Mathieu, and alternating Mathieu series, Appl. Math. Comput. 400 (2021), 126099.
  22. R. K. Parmar, T. K. Pogany, and R. K. Saxena, On properties and applications of (p, q)-extended τ-hypergeometric functions, Comptes Rendus. Mathematique. 356 (2018), no. 3, 278-282. https://doi.org/10.1016/j.crma.2017.12.014
  23. R. K. Parmar and T. K. Pogany, Extended Srivastava's triple hypergeometric HA,p,q function and related bounding inequalities, J. Contemp. Math. Anal. 52 (2017), no. 6, 261-272. https://doi.org/10.3103/S1068362317060012
  24. R. K. Parmar and T. K. Pogany, On (p, q)-Extension of Further Members of Bessel-Struve Functions Class, Miskolc Mathematical Notes 20 (2019), 451-463. https://doi.org/10.18514/MMN.2019.2608
  25. E. D. Rainville, Special Functions, Macmillan Company, New York, 1960; Reprinted by Chelsea Publishing Company, Bronx, New York, 1971.
  26. L. J. Slater, Generalized Hypergeometric Functions, Cambridge University Press, Cambridge, London, New York, 1966.
  27. E. W. Weisstein, Holder's Inequalities, MathWorld- A Wolfarm Web Resource. https://mathworld.wolfarm.com/HolderInequalities.html.
  28. X. Yang, Theory and Applications of Special Functions for Scientists and Engineers, 272-273, Springer Singapore, 2022.