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ON SPATIAL QUATERNIONIC SMARANDACHE RULED

SURFACES

Kemal Eren∗, Abdussamet Çalışkan, and Süleyman ŞENYURT

Abstract. In this paper, we investigate the spatial quaternionic expres-
sions of the ruled surfaces whose base curves are formed by the Smaran-

dache curve. Moreover, we formulate the striction curves and dralls of
these surfaces. If the quaternionic Smarandache ruled surfaces are closed,

the pitches and angle of pitches are interpreted. Finally, we calculate the

integral invariants of these surfaces using quaternionic formulas.

1. Introduction

The concept of quaternions was introduced in 1843 by the Irish mathemati-
cian William Rowan Hamilton. The quaternions have applications in many
disciplines. Some of these are computer graphics, the development of vision
devices, robot kinematics, control theory, quantum theory, molecular dynam-
ics, animation representations, and navigation devices [7, 8, 16, 5, 6]. New
interpretations have been made using quaternions in the theory of curves and
surfaces. Bharathi and Nagaraj expressed the Serenet-Ferret invariants of any
curve using quaternions in 1987 [1]. Chen and Lie reached new results by mak-
ing correlations between quaternionic transformations and minimal surfaces in
2005 [4]. In addition, Çetin and Kocayiğit investigated the Serret-Frenet for-
mulas of Samarandache curves in terms of quaternions [3]. Şenyurt and Eren
investigate special Smarandache curves created by the Frenet vectors of space-
like anti-Salkowski curve with a spacelike principal normal [15]. Öztürk et al.
introduce Smarandache curves of an affine C∞ curve in affine 3-space. Besides,
they calculate the relationship between the Frenet frames of the curve couple
and the Frenet invariants of each derived curve [11].

Ruled surfaces are surfaces that can be generated by moving a straight line
along a curve. There have been numerous studies conducted in various spaces
and frames. The authors introduce the concept of partner-ruled surfaces, de-
fined in the Flc frame on a polynomial curve. They investigate the requirements
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for two of these surfaces to be simultaneously developable and minimal. Ad-
ditionally, they examine the geodesic, asymptotic, and curvature lines of the
parameter curves in the partner-ruled surfaces [9]. In [10], they present a new
approach to understanding the geometric characteristics and local singularities
of time-like surfaces. The method is based on the introduction of the geomet-
ric invariant, which allows us to derive necessary and sufficient conditions for a
time-like surface to be a time-like developable ruled surface. They then use sin-
gularity theory to classify the singularities of this surface, providing a complete
characterization of its geometric features. Şenyurt and Çalışkan investigate the
ruled surface with the theory of quaternion. They express integral invariants
and calculate the ruled surfaces drawn by Frenet vectors belonging to spatial
quaternionic curves [14]. In [2], the author analyzes the quaternionic ruled sur-
faces according to the alternative frame. Ouarab demonstrates a new method
for constructing special ruled surfaces and investigates their minimalist and
developability properties. The author introduces the concept of Smarandache
ruled surfaces, which are defined based on the Darboux frame of a curve on a
regular surface. The paper also presents theorems that provide sufficient and
necessary conditions for these surfaces to be minimal and developable. Further-
more, the authors examine Smarandache ruled surfaces in terms of alternative
frame [12, 13].

In Section 2, we present the geometric preliminaries regarding the basic
problem of the paper mentioned in the introduction. In Section 3, we define
these surfaces using quaternionic Smarandache curves as base curves and Frenet
vectors as their directives. Moreover, we calculate the striction curves, dralls,
pitches, and angle of pitches for these surfaces. Finally, we exemplify the
findings.

2. Preliminaries

In this section, we show the notions of the quaternions and the spatial
quaternionic curves. We demonstrate the definitions of quaternionic Smaran-
dache curves and we investigate the Frenet-Serret invariants of these curves.

2.1. Quaternions and quatenionic ruled surface

The real quaternion q is expressed as the sum of a scalar Sq = q0 and a
vector Vq = q1e1 + q2e2 + q3e3 such that

q = q0 + q1e1 + q2e2 + q3e3,

where the set {ei| 1 ⩽ i ⩽ 3} is the standard orthonormal basis set. The com-
ponents q0, q1, q2 and q3 are real numbers, and ei, (1 ⩽ i ⩽ 3) are quater-
nionic units that satisfy the non-commutative multiplication rules
ei × ej = ek = −ej × ei and ei × ei = −1 for all 1 ⩽ i, j ⩽ 3. The complex
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conjugate q̄ is defined by

q̄ = Sq − Vq = q0 − q1e1 − q2e2 − q3e3.

Let Q denote the set of quaternions. The quaternion inner product is defined
by the following real-valued, symmetric, and bilinear form:

(1)

h : Q×Q → R

(p, q) → h (p, q) =
1

2
(p× q̄ + q × p̄) .

For p = Sp + Vp and q = Sq + Vq, the quaternionic product is defined by

p× q = SpSq + SpVq + SqVp − ⟨Vp, Vq⟩+ Vp ∧ Vq,

where ⟨, ⟩ and ∧ denote the inner product and cross product in R3 and thus,
the spatial quaternionic cross product obtains as

p× q = −⟨Vp, Vq⟩+ Vp ∧ Vq.

The norm of a quaternion q is

ρ(q)
2
= h (q, q) = q × q̄ = q̄ × q = q0

2 + q1
2 + q2

2 + q3
2.

Since ρ (q) = 1, the quaternion q is called unit quaternion. The inverse of the
quaternion q is given by

q−1 =
q̄

ρ (q)
.

The space of the spatial quaternions is classified by {q ∈ Q| q + q = 0} where
Q denotes quaternion set [1, 6].

Definition 2.1. [1] The spatial quaternionic curve α is defined by

α : I ⊂ R → Q,

s → α(s) =

3∑
i=1

αi (s) ei

where I = [0, 1] is an interval in real line R and s ∈ [0, 1] is the arc-length
parameter.

Theorem 2.2. [1] Let α be a spatial quaternionic curve with the arc-length
parameter s and be non-zero curvatures {κ, τ}, and Frenet frame {t, n, b} of the
quaternionic curve α. Then the Serret-Frenet formulae of the spatial quater-
nionic curve α at a point α (s) are t

n
b


s

=

 0 κ 0
−κ 0 τ
0 −τ 0

 t
n
b


such that

t (s) = α′ (s) , n (s) =
α′′ (s)

∥α′′ (s)∥
, b (s) = t (s)× n (s) ,
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where the vectors t, n and b are unit tangent, unit principal normal, and unit
binormal vectors of the spatial quaternionic curve α, respectively.

Lemma 2.3. [14] The drall and the striction curve of the quaternionic ruled
surface drawn by arbitrary vector X are respectively given by

(2) P =
1

2

(X ×X ′)× α′ + α′ × (X ×X ′)

ρ(X ′)
2

and

(3) r (s) = α (s)− 1

2

X ′ × t+ t×X ′

ρ(X ′)
2 .

Definition 2.4. [14] For given closed spatial quaternionic ruled surface, the
magnitude of lx =

∮
α

h (dα,X) is called the pitch of this surface.

Theorem 2.5. [14] Let D be Steiner rotation vector and V be Steiner trans-
lation vector. The angle of pitch and the pitch of the closed spatial quaternionic
ruled surface, λx and lx are equal to λx = h (D,X) and lx = h (V,X).

2.2. Quaternionic Smarandache curves

Definition 2.6. [3] Let α = α (s) be a spatial quaternion curve and {t, n, b}
be Frenet-Serret vectors. The spatial quaternionic tn−Smarandache curves
with the arc-length parameter s∗ are defined by

β1 (s
∗ (s)) =

1√
2
(t (s) + n (s)) .

The Frenet-Serret invariants of the spatial quaternionic tn−Smarandache
curves are

T β1 =
1√

2κ2 + τ2
(−κt+ κn+ τb) ,

Nβ1 =
1√

a2
1 + a2

2 + a2
3

(a1t+ a2n+ a3b) ,

Bβ1 =
1√

2κ2 + τ2
√

a2
1 + a2

2 + a2
3

(b1t+ b2n+ b3b) ,

kβ1
1 =

√
2
√

a2
1 + a2

2 + a2
3

(2κ2 + τ2)2
,

kβ1
2 =

√
2
((
κ′ + κ2

)
(κc3 − τc2) +

(
κ2 − κ′ + τ2

)
(κc3 + τc1) + κ (κτ + τ ′) (c1 + c2)

)
(2κκ′ + ττ ′)2 + (2κ2τ + κτ ′ − κ′τ + τ3)2 + (κτ ′ − κ′τ)2 + (2κ3 + κτ2)2

,
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where 

a1 = −2κ4 − κ′τ2 − κ2τ2 + κττ ′,

a2 = −2κ4 − 3κ2τ2 + κ′τ2 − τ2 − κττ ′,

a3 = 2κ3τ + 2κ2τ ′ + κτ3 − 2κκ′τ,

b1 = κa3 − τa2,

b2 = κa3 + τa1,

b3 = −κ (a1 + a2) ,

c1 = −κ′′ − 3κκ′ + κ3 + κτ2,

c2 = −3κκ′ − κ3 − 3ττ ′ + κ′′ − κτ2,

c3 = −κ2τ + 2κ′τ − τ3 + κτ ′ + τ ′′.

Definition 2.7. [3] Let α = α (s) be a spatial quaternion curve and {t, n, b}
be Frenet-Serret vectors. The spatial quaternionic tb−Smarandache curves with the
arc-length parameter s∗ are defined by

β2 (s
∗ (s)) =

1√
2
(t (s) + b (s)) .

The Frenet-Serret invariants of the spatial quaternionic tb−Smarandache curves
are 

T β2 = n,

Nβ2 =
1√

κ2 + τ2
(−κt+ τb) ,

Bβ2 =
1√

κ2 + τ2
(τt+ κb) ,

kβ2
2 =

√
2 (τ − κ)

(
d3

(
−κ2 + κτ

)
− d1

(
κτ − τ2

))
(κ− τ)2(κ′ − τ ′)2 + (κ2τ − 2κτ2 + τ3)2 + (−2κ2τ + κτ2 + κ3)2

,

kβ2
1 =

√
2
√
κ2 + τ2

κ− τ
,

where


d1 = −3κκ′ + κ′τ + 2κτ ′,

d2 = −κ3 + κ2τ + κ′′ − τ ′′ − κτ2 + τ3,

d3 = 2κ′τ − 3ττ ′ + κτ ′.

Definition 2.8. [3] Let α = α (s) be a spatial quaternion curve and {t, n, b}
be Frenet-Serret vectors. The spatial quaternionic nb−Smarandache curves with the
arc-length parameter s∗ are defined by

β3 (s
∗ (s)) =

1√
2
(n (s) + b (s)) .
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The Frenet-Serret invariants of the spatial quaternionic nb−Smarandache curves
are

T β3 =
1√

κ2 + 2τ2
(−κt− τn+ τb) ,

Nβ3 =
1√

f2
1 + f2

2 + f2
3

(f1t+ f2n+ f3b) ,

Bβ3 =
1√

κ2 + 2τ2
√

f2
1 + f2

2 + f2
3

(g1t+ g2n+ g3b) ,

kβ3
1 =

√
2
√

f2
1 + f2

2 + f2
3

(κ2 + 2τ2)2
,

kβ3
2 =

√
2
((
−κ′τ + κτ2

)
(h2 + h3) +

(
κ2 + τ ′ + τ2

)
(κh3 + τh1)−

(
τ2 − τ ′) (κh2 − τh1)

)
(κκ′ + 2ττ ′)2 + (κ2τ + 2τ3)2 + (κτ ′ − κ′τ)2 + (κ3 + κτ ′ + 2κτ2 − κ′τ)2

,

where 

f1 = −κ3τ − 2κ′τ2 + 2κτ3 + 2κττ ′,

f2 = −κ4 − κ2τ ′ − 3κ2τ2 − 2τ4 + κκ′τ,

f3 = −κ2τ2 + κ2τ ′ − 2τ4 − κκ′τ,

g1 = −τ (f3 + f2) ,

g2 = κf3 + τf1,

g3 = −κf2 + τf1,

h1 = −κ′′ + κ′τ + 2κτ ′ + κ3 + κτ2,

h2 = −3κκ′ + κ2τ − τ ′′ − 3ττ ′ + τ3,

h3 = −κ2τ − 3ττ ′ − τ3 + τ ′′.

3. Spatial Quaternionic Smarandache Ruled Surfaces

In this section, we define ruled surfaces whose base curves are called Smarandache
curves. Moreover, we express the notions of the drall, striction curve, the pitch and
angle of pitch. Finally, we calculate integral invariants, and we find some interesting
results.

Definition 3.1. Let α = α (s) be a unit speed spatial quaternionic curve and
{t, n, b} be Frenet-Serret vectors. The ruled surfaces generated by the spatial quater-
nionic Smarandache curves are defined as follows:

Φ1 (s, v) =
1√
2
(t (s) + n (s)) + vb (s) ,

Φ2 (s, v) =
1√
2
(t (s) + b (s)) + vn (s) ,

Φ3 (s, v) =
1√
2
(n (s) + b (s)) + vt (s) .

These ruled surfaces are called spatial quaternionic tn−Smarandache ruled surface,
spatial quaternionic tb−Smarandache ruled surface and spatial quaternionic nb−Smarandache
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ruled surface, respectively.

Theorem 3.2. Let Φ1, Φ2, and Φ3 be spatial quaternionic Smarandache ruled
surfaces, then the striction curves rβ1 , rβ2 and rβ3 of Φ1, Φ2 and Φ3 are

rβ1 = β1 +
κ

τ
√
2κ2 + τ2

b,

rβ2 = β2,

rβ3 = β3 +
τ

κ
√
κ2 + 2τ2

t,

respectively, where κ ̸= 0 and τ ̸= 0.

Proof. Let α = α (s) be a unit speed spatial quaternion curve with the Frenet vec-
tors {t, n, b} and the Smarandache curves β1, β2, β3 of the spatial quaternion curve α.
By using the quaternionic inner product, the striction curve of the spatial quaternionic
ruled surface Φ1 can be written by

rβ1 = β1 −
h
(
b′, T β1

)
ρ(b′)2

b = β1 −
1
2

(
b′ × T̄ β1 + T β1 × b̄′

)√
h (b′, b′)

b.

Substituting b′ = τn and using the complex conjugate of a quaternion, we arrive at

rβ1 = β1 −
1
2

(
τ
(
n× T β1

)
+ τ

(
T β1 × n

))
τ2

b.

Considering the spatial quaternion, the striction curve is

rβ1 = β1 +
κ

τ
√
2κ2 + τ2

b.

If the equation (1), the Frenet invariants and spatial quaternions are used, the striction
curves of the ruled surfaces Φ2, Φ3 are found

rβ2 = β2 −
h
(
n′, T β2

)
ρ(n′)2

n = β2 −
1
2

(
n′ × T̄ β2 + T β2 × n̄′)√

h (n′, n′)
n

= β2 +
1
2

(
−κ

(
t× T β2

)
+ τ

(
b× T β2

)
− κ

(
T β2 × t

)
+ τ

(
T β2 × b

))
κ2 + τ2

n

= β2

and

rβ3 = β3 −
h
(
t′, T β3

)
ρ(t′)2

t = β3 −
1
2

(
t′ × T̄ β3 + T β3 × t̄′

)√
h (t′, t′)

t

= β3 −
1
2

(
κ
(
n× T β3

)
+ κ

(
T β3 × t

))
κ2

t

= β3 +
τ

κ
√
κ2 + 2τ2

t.
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Theorem 3.3. Let Φ1, Φ2, and Φ3 be spatial quaternionic Smarandache ruled
surfaces, then the dralls of the closed spatial quaternionic Smarandache ruled surfaces
are 

Pβ1 =
−κ

τ
√
2κ2 + τ2

,

Pβ2 = 0,

Pβ3 =
τ

κ
√
κ2 + 2τ2

,

respectively, where κ ̸= 0 and τ ̸= 0.

Proof. Let α = α (s) be a unit speed spatial quaternion curve with the Frenet vec-
tors {t, n, b} and the Smarandache curves β1, β2, β3 of the spatial quaternion curve α.
According to Lemma 2.3. and quaternionic inner product, the dralls of the closed spa-
tial quaternionic Smarandache ruled surface Φ1 drawn by the motion of the binormal
vector b is given by

Pβ1 =
1

2

(b× b′)× β′
1 + β′

1 × (b× b′)

ρ(b′)2
.

Using the Frenet invariants and the spatial quaternions, we recompute for drall as
follows:

Pβ1 = −1

2

(b× b′)× T β1 + T β1 × (b× b′)

h (b′, b′)

= −1

2

(b× (−τn))× T β1 + T β1 × (b× (−τn))

⟨b′, b′⟩

=
1

2

τ

(
−κ√

2κ2 + τ2
(t× t) +

κ√
2κ2 + τ2

(t× n) +
τ√

2κ2 + τ2
(t× b)

)
+τ

(
−κ√

2κ2 + τ2
(t× t) +

κ√
2κ2 + τ2

(n× t) +
τ√

2κ2 + τ2
(b× t)

)
τ2

=
−κ

τ
√
2κ2 + τ2

.

In similar way, we determine the dralls Pβ2 and Pβ3 of the surfaces Φ2 and Φ3 as

Pβ2 =
1

2

(n× n′)× β′
2 + β′

2 × (n× n′)

ρ(b′)2

= −1

2

(n× (−κt+ τb))× T β2 + T β2 × (n× (−κt+ τb))

⟨b′, b′⟩

= −1

2

κ
(
b× T β2

)
+ τ

(
t× T β2

)
+ κ

(
T β2 × b

)
+ τ

(
T β2 × t

)
κ2 + τ2

= −1

2

κ (b× n) + τ (t× n) + κ (n× b) + τ (n× t)

κ2 + τ2

= 0
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and

Pβ3 =
1

2

(t× t′)× β′
3 + β′

3 × (t× t′)

ρ(t′)2

= −1

2

(t× (κn))× T β3 + T β3 × (t× (κn))

⟨t′, t′⟩

= −1

2

κ


−κ√

κ2 + 2τ2
(b× t)− τ√

κ2 + 2τ2
(b× n) +

τ√
κ2 + 2τ2

(b× b)

− κ√
κ2 + 2τ2

(t× b)− τ√
κ2 + 2τ2

(n× b) +
τ√

κ2 + 2τ2
(b× b)


κ2

=
τ

κ
√
κ2 + 2τ2

.

Corollary 3.4. Let Φ1, Φ2, and Φ3 be spatial quaternionic Smarandache ruled
surfaces, then the following expressions exist:

(i) The quaternionic Smarandache ruled surface Φ1 is not developable,
(ii) Since the drall of Φ2 is zero, the quaternionic Smarandache ruled surface Φ2

is developable,
(iii) The quaternionic Smarandache ruled surface Φ3 is developable if and only if

the base curve of Φ3 is planar.

Theorem 3.5. Let Φ1, Φ2, and Φ3 be spatial quaternionic Smarandache ruled
surfaces, then the angles of pitch of the closed spatial quaternionic Smarandache ruled
surfaces are 

λβ1 =

∮
kβ1
2 τ√

2κ2 + τ2
+

∮
kβ1
1 b3√

2κ2 + τ2
√

a2
1 + a2

2 + a2
3

,

λβ2 =

∮
kβ2
2 ,

λβ3 = −
∮

kβ3
2 κ√

κ2 + 2τ2
+

∮
kβ3
1 g1√

κ2 + 2τ2
√

f2
1 + f2

2 + f2
3

,

respectively.

Proof. Let α = α (s) be a unit speed spatial quaternion curve with the Frenet
vectors {t, n, b} and the Smarandache curves β1, β2, β3 of the spatial quaternion curve

α. Taking into consideration Steiner vector dβ1 =
∮
wβ1 =

∮
T β1kβ1

2 + Bβ1kβ1
1 , the

angle of pitch of the closed spatial quaternionic ruled surface λβ1 of the surfaces Φ1

is written by

λβ1 = h
(
dβ1 , b

)
=

1

2

(
dβ1 × b̄+ b× d̄β1

)
= −1

2

(
dβ1 × b+ b× dβ1

)
.

Using the Frenet invariants and the spatial quaternions, we calculate the angle of the
pitch as follows:
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λβ1 = −1

2

(∮
kβ1
2

(
T β1 × b

)
+

∮
kβ1
1

(
Bβ1 × b

)
+

∮
kβ1
2

(
b× T β1

)
+

∮
kβ1
1

(
b×Bβ1

))

= −1

2



∮
kβ1
2√

2κ2 + τ2
(−κ (t× b) + κ (n× b) + τ (b× b))

+

∮
kβ1
1√

2κ2 + τ2
√

a2
1 + a2

2 + a2
3

(b1 (t× b) + b2 (n× b) + b3 (b× b))

+

∮
kβ1
2√

2κ2 + τ2
(−κ (b× t) + κ (b× n) + τ (b× b))

+

∮
kβ1
1√

2κ2 + τ2
√

a2
1 + a2

2 + a2
3

(b1 (b× t) + b2 (b× n) + b3 (b× b))


=

∮
kβ1
2 τ√

2κ2 + τ2
+

∮
kβ1
1 b3√

2κ2 + τ2
√

a2
1 + a2

2 + a2
3

.

Considering dβ2 =
∮
wβ2 =

∮
T β2kβ2

2 +Bβ2kβ2
1 and dβ3 =

∮
wβ3 =

∮
T β3kβ3

2 +Bβ3kβ3
1 ,

we can write the angles of the pitch λβ2 , λβ3 the ruled surfaces Φ2, Φ3 respectively,

λβ2 = h
(
dβ2 , n

)
=

1

2

(
dβ2 × n̄+ n× d̄β2

)
= −1

2

(
dβ2 × n+ n× dβ2

)
= −1

2

(∮
kβ2
2

(
T β2 × n

)
+

∮
kβ2
1

(
Bβ2 × n

)
+

∮
kβ2
2

(
n× T β2

)
+

∮
kβ2
1

(
n×Bβ2

))

= −1

2


∮

kβ2
2 (n× n) +

∮
kβ2
1√

κ2 + τ2
(τ (t× n) + κ (b× n))

+

∮
kβ2
2 (n× n) +

∮
kβ2
1√

κ2 + τ2
(τ (n× t) + κ (n× b))


=

∮
kβ2
2

and

λβ3 = h
(
dβ3 , t

)
=

1

2

(
dβ3 × t̄+ t× d̄β3

)
= −1

2

(
dβ3 × t+ t× dβ3

)
= −1

2

(∮
kβ3
2

(
T β3 × t

)
+

∮
kβ3
1

(
Bβ3 × t

)
+

∮
kβ3
2

(
t× T β3

)
+

∮
kβ3
1

(
t×Bβ3

))

= −1

2



∮
kβ3
2√

κ2 + 2τ2
(−κ (t× t)− τ (n× t) + τ (b× t))

+

∮
kβ3
1√

κ2 + 2τ2
√

f2
1 + f2

2 + f2
3

(
g1 (t× t) + g2 (n× t) + g3 (b× t)

)
+

∮
kβ3
2√

κ2 + 2τ2
(−κ (t× t)− τ (t× n) + τ (t× b))

+

∮
kβ3
1√

κ2 + 2τ2
√

f2
1 + f2

2 + f2
3

(
g1 (t× t) + g2 (t× n) + g3 (t× b)

)


=

∮
−kβ3

2 κ√
κ2 + 2τ2

+

∮
kβ3
1 g1√

κ2 + 2τ2
√

f2
1 + f2

2 + f2
3

.
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Theorem 3.6. Let Φ1, Φ2, and Φ3 be spatial quaternion Smarandache ruled sur-
faces, then the pitches of the closed spatial quaternionic Smarandache ruled surfaces
are 

lβ1 =

∮
τ√

2κ2 + τ2
ds,

lβ2 =

∮
ds,

lβ3 = −
∮

κ√
κ2 + 2τ2

ds,

respectively.

Proof. Let α = α (s) be a unit speed spatial quaternion curve with the Frenet vec-
tors {t, n, b} and the Smarandache curves β1, β2, β3 of the spatial quaternion curve α.
For V β1 =

∮
dβ1 =

∮
T β1ds, the pitch lβ1 of the closed spatial quaternionic Smaran-

dache ruled surface Φ1 is written by

lβ1 = h
(
V β1 , b

)
= h

(∮
T β1ds, b

)
.

If we substitute the values in the above equation, the pitch lβ1 of the closed spatial
quaternionic ruled surface Φ1 is

lβ1 =
1

2

(∮ (
T β1 × b̄

)
ds+

∮ (
b× T̄ β1

)
ds

)
= −1

2

(∮ (
T β1 × b

)
ds+

∮ (
b× T β1

)
ds

)

= −1

2


∮

1√
2κ2 + τ2

(−κ (t× b) + κ (n× b) + τ (b× b))ds

+

∮
1√

2κ2 + τ2
(−κ (b× t) + κ (b× n) + τ (b× b)) ds


=

∮
τ√

2κ2 + τ2
ds.

For V β2 =
∮
dβ2 =

∮
T β2ds and V β3 =

∮
dβ3 =

∮
T β3ds, we can write the pitches lβ2

and lβ3 of the closed spatial quaternionic ruled surfaces Φ2 and Φ2 as follows:

lβ2 = h
(
V β2 , b

)
= h

(∮
T β2ds, n

)
=

1

2

(∮ (
T β2 × n̄

)
ds+

∮ (
n× T̄ β2

)
ds

)
= −1

2

(∮ (
T β2 × n

)
ds+

∮ (
n× T β2

)
ds

)
= −1

2

(∮
(n× n)ds+

∮
(n× n) ds

)
=

∮
ds
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and

lβ3 = h
(
V β3 , t

)
= h

(∮
T β3ds, t

)
=

1

2

(∮ (
T β3 × t̄

)
ds+

∮ (
t× T̄ β3

)
ds

)
= −1

2

(∮ (
T β3 × t

)
ds+

∮ (
t× T β3

)
ds

)

= −1

2


∮

1√
κ2 + 2τ2

(−κ (t× t)− τ (n× t) + τ (b× t))ds

+

∮
1√

κ2 + 2τ2
(−κ (t× t)− τ (t× n) + τ (t× b)) ds


= −

∮
κ√

κ2 + 2τ2
ds.

Example 3.7. Let us consider a spatial quaternionic curve given by the para-
metric equation

α (s) =
3

4

(
cos (s) +

cos (3s)

9
, sin (s) +

sin (3s)

9
,
−2 cos (s)√

3

)
.

The quaternionic Smarandache curves constructed by the Frenet vectors of the spatial
quaternionic curve α are

β1 (s
∗ (s)) =


−
√
3 (cos (s) + cos (3s)) + cos (s) (3 sin (s) + sin (3s))

4
√
2 cos (s)

,

cos (s)3 −
√
3 cos (s) sin (s)√
2

,

√
1 + cos (2s) sec (s) +

√
6 sin (s)

4

 ,

β2 (s
∗ (s)) =


2 cos (s) cos (2s)− 3 sin (s)− sin (3s)

4
√
2

,
cos (s)3 + sin (s)3√

2
,

√
6 (cos (s) + sin (s))

4

 ,

β3 (s
∗ (s)) =



−
cos (s)

(
−3 cos (s) + 2

√
3 cos (2s) + cos (3s)

)
4
√

1 + cos (2s)
,

cos (s) sin (s)
(
−
√
3 + sin (s) tan (s)

)
√
2

,√
1 + cos (2s)

(√
3 + sec (s)

)
4


,
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and the spatial quaternionic Smarandache ruled surfaces are found as

Φ1 (s, v) =



−
√
3 (cos (s) + cos (3s)) + cos (s) (3 sin (s) + sin (3s))

4
√
2 cos (s)

−v cos (s) (−2 + cos (2s))

2
,
2 cos (s)3 −

√
3 sin (2s)

2
√
2

+ v sin (s)3,

√
2 +

√
6 sin (s) + 2

√
3v cos (s)

4


,

Φ2 (s, v) =


2 cos (s) cos (2s)− 3 sin (s)− sin (3s)

4
√
2

−
√
3v (cos (s) + cos (3s))

4 cos (s)
,

√
2
(
cos (s)3 + sin (s)3

)
−

√
3v sin (2s)

4
,

√
6 (cos (s) + sin (s)) + 2v

4

 ,

Φ3 (s, v) =



−
(
−3 cos (s) + 2

√
3 cos (2s) + cos (3s)

)
4
√
2

+
v (−3 sin (s)− sin (3s))

4
,

− sin (2s)
(√

3− sin (s) tan (s)
)

2
√
2

+ v cos (s)3,

√
2
(√

3 cos (s) + 1
)
+ 2

√
3v sin (s)

4


.

(a) The

surface
Φ1 (s, v)

and the

curve β1

(b) The

surface
Φ2 (s, v)

and the

curve β2

(c) The

surface
Φ3 (s, v)

and the

curve β3

Figure 1. The spatial quaternionic Smarandache ruled sur-
faces (top view) and the quaternionic Smarandache curve (yel-
low) with s ∈ [−0.5, 1.5] and v ∈ [−1, 1]
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4. Conclusion

In this paper, we derive the spatial quaternionic Smarandache ruled surfaces and
the striction curves and dralls of these surfaces are calculated. The conditions of these
ruled surfaces to be developable are investigated. If the quaternionic Smarandache
ruled surfaces are closed, the pitches and angle of pitches are constructed. The
integral invariants of these surfaces, whose base curves are formed by the quaternionic
Smarandache curve, are calculated using quaternionic formulas.
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[3] M. Çetin and H. Kocayiğit, On the quaternionic Smarandache curves in Euclidean 3-
space, Int. J. Contemp. Math. Sciences 8 (2013), 139–150.

[4] J. Chen and J. Li, Quaternionic maps and minimal surfaces, Ann. Sc. norm. super. Pisa

- Cl. sci. 4 (2005), 375–388.
[5] P. R. Girard, The quaternion group and modern physics, Eur. J. Phys. 5 (1984), 25–32.

[6] W. R. Hamilton, Elements of Quaternions, Chelsea, New York, 1899.

[7] J. A. Hanson and H. Ma, Quaternion frame approach to streamline visualization, IEEE
Trans. Vis. Comput. Graph. 1 (1995), 164–173.

[8] K. I. Kou and Y. H. Xia, Linear quaternion differential equations: Basic theory and
fundamental results, Stud. Appl. Math. 141 (2018), 3–45.

[9] Y. Li, K. Eren, K. H. Ayvacı, and S. Ersoy, Simultaneous characterizations of partner

ruled surfaces using Flc frame, AIMS Math. 7 (2022), 20213–20229.
[10] Y. Li, S. H. Nazra, and R. A. Abdel-Baky, Singularity properties of timelike sweeping

surface in Minkowski 3-space, Symmetry 14 (2022), 1996.
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