References
- Kim K, Cho K, Jang R, Kyung S, Lee S, Ham S, et al. Updated primer on generative artificial intelligence and large language models in medical imaging for medical professionals. Korean J Radiol 2024;25:224-242 https://doi.org/10.3348/kjr.2023.0818
- Ha EJ, Chung SR, Na DG, Ahn HS, Chung J, Lee JY, et al. 2021 Korean thyroid imaging reporting and data system and imaging-based management of thyroid nodules: Korean Society of Thyroid Radiology consensus statement and recommendations. Korean J Radiol 2021;22:2094-2123 https://doi.org/10.3348/kjr.2021.0713
- Elkassem AA, Smith AD. Potential use cases for ChatGPT in radiology reporting. AJR Am J Roentgenol 2023;221:373-376 https://doi.org/10.2214/AJR.23.29198
- Kim S, Lee CK, Kim SS. Large language models: a guide for radiologists. Korean J Radiol 2024;25:126-133 https://doi.org/10.3348/kjr.2023.0997
- Haver HL, Gupta AK, Ambinder EB, Bahl M, Oluyemi ET, Jeudy J, et al. Evaluating the use of ChatGPT to accurately simplify patient-centered information about breast cancer prevention and screening. Radiol Imaging Cancer 2024;6:e230086
- Gordon EB, Towbin AJ, Wingrove P, Shafique U, Haas B, Kitts AB, et al. Enhancing patient communication with chat-GPT in radiology: evaluating the efficacy and readability of answers to common imaging-related questions. J Am Coll Radiol 2024;21:353-359