DOI QR코드

DOI QR Code

Assessment of Local Tumor Progression After Image-Guided Thermal Ablation for Renal Cell Carcinoma

  • Byung Kwan Park (Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine)
  • Received : 2023.07.18
  • Accepted : 2023.10.01
  • Published : 2024.01.01

Abstract

Focal enhancement typically suggests local tumor progression (LTP) after renal cell carcinoma is percutaneously ablated. However, evaluating findings that are false positive or negative of LTP is less familiar to radiologists who have little experience with renal ablation. Various imaging features are encountered during and after thermal ablation. Ablation procedures and previous follow-up imaging should be reviewed before determining if there is LTP. Previous studies have focused on detecting the presence or absence of focal enhancement within the ablation zone. Therefore, various diagnostic pitfalls can be experienced using computed tomography or magnetic resonance imaging examinations. This review aimed to assess how to read images during or after ablation procedures, recognize imaging features of LTP and determine factors that influence LTP.

Keywords

References

  1. Park BK, Shen SH, Fujimori M, Wang Y. Thermal ablation for renal cell carcinoma: expert consensus from the asian conference on tumor ablation. Korean J Radiol 2021;22:1490-1496 https://doi.org/10.3348/kjr.2020.1080
  2. Park BK, Shen SH, Fujimori M, Wang Y. Asian conference on tumor ablation guidelines for renal cell carcinoma. Investig Clin Urol 2021;62:378-388 https://doi.org/10.4111/icu.20210168
  3. Park BK, Kim CK, Choi HY, Lee HM, Jeon SS, Seo SI, et al. Limitation for performing ultrasound-guided radiofrequency ablation of small renal masses. Eur J Radiol 2010;75:248-252 https://doi.org/10.1016/j.ejrad.2009.03.050
  4. Yamanaka T, Yamakado K, Yamada T, Fujimori M, Takaki H, Nakatsuka A, et al. CT-guided percutaneous cryoablation in renal cell carcinoma: factors affecting local tumor control. J Vasc Interv Radiol 2015;26:1147-1153 https://doi.org/10.1016/j.jvir.2015.04.031
  5. Hao G, Hao Y, Cheng Z, Zhang X, Cao F, Yu X, et al. Local tumor progression after ultrasound-guided percutaneous microwave ablation of stage T1a renal cell carcinoma: risk factors analysis of 171 tumors. Int J Hyperthermia 2018;35:62-70 https://doi.org/10.1080/02656736.2018.1475684
  6. Kim HJ, Park BK, Park JJ, Kim CK. CT-guided radiofrequency ablation of T1a renal cell carcinoma in korea: mid-term outcomes. Korean J Radiol 2016;17:763-770 https://doi.org/10.3348/kjr.2016.17.5.763
  7. Park BK, Gong IH, Kang MY, Sung HH, Jeon HG, Jeong BC, et al. RFA versus robotic partial nephrectomy for T1a renal cell carcinoma: a propensity score-matched comparison of midterm outcome. Eur Radiol 2018;28:2979-2985 https://doi.org/10.1007/s00330-018-5305-6
  8. Eiken PW, Atwell TD, Kurup AN, Boorjian SA, Thompson RH, Schmit GD. Imaging following renal ablation: what can we learn from recurrent tumors? Abdom Radiol (NY) 2018;43:2750-2755 https://doi.org/10.1007/s00261-018-1541-0
  9. Lum MA, Shah SB, Durack JC, Nikolovski I. Imaging of small renal masses before and after thermal ablation. Radiographics 2019;39:2134-2145 https://doi.org/10.1148/rg.2019190083
  10. Wile GE, Leyendecker JR, Krehbiel KA, Dyer RB, Zagoria RJ. CT and MR imaging after imaging-guided thermal ablation of renal neoplasms. Radiographics 2007;27:325-339; discussion 339-340 https://doi.org/10.1148/rg.272065083
  11. Kawamoto S, Solomon SB, Bluemke DA, Fishman EK. Computed tomography and magnetic resonance imaging appearance of renal neoplasms after radiofrequency ablation and cryoablation. Semin Ultrasound CT MR 2009;30:67-77 https://doi.org/10.1053/j.sult.2008.12.005
  12. Park SY, Park BK, Kim CK. Thermal ablation in renal cell carcinoma: what affects renal function? Int J Hyperthermia 2012;28:729-734 https://doi.org/10.3109/02656736.2012.728017
  13. Bricault I, Kikinis R, Morrison PR, Vansonnenberg E, Tuncali K, Silverman SG. Liver metastases: 3D shape-based analysis of CT scans for detection of local recurrence after radiofrequency ablation. Radiology 2006;241:243-250 https://doi.org/10.1148/radiol.2411050987
  14. Rhim H, Goldberg SN, Dodd GD 3rd, Solbiati L, Lim HK, Tonolini M, et al. Essential techniques for successful radiofrequency thermal ablation of malignant hepatic tumors. Radiographics 2001;21 Spec No:S17-S35; discussion S36-S39 https://doi.org/10.1148/radiographics.21.suppl_1.g01oc11s36
  15. Park BK, Morrison PR, Tatli S, Govindarajulu U, Tuncali K, Judy P, et al. Estimated effective dose of CT-guided percutaneous cryoablation of liver tumors. Eur J Radiol 2012;81:1702-1706 https://doi.org/10.1016/j.ejrad.2011.04.067
  16. Takaki H, Nakatsuka A, Cornelis F, Yamanaka T, Hasegawa T, Sakuma H, et al. False-positive tumor enhancement after cryoablation of renal cell carcinoma: a prospective study. AJR Am J Roentgenol 2016;206:332-339 https://doi.org/10.2214/AJR.15.14821
  17. Lee HJ, Chung HJ, Wang HK, Shen SH, Chang YH, Chen CK, et al. Evolutionary magnetic resonance appearance of renal cell carcinoma after percutaneous cryoablation. Br J Radiol 2016;89:20160151
  18. Currie C, Stewart S. The relationship of apparent diffusion coefficient values of renal cell carcinoma before and after cryotherapy ablation. Radiography 2023;29:473-478 https://doi.org/10.1016/j.radi.2023.02.006
  19. Lokken RP, Gervais DA, Arellano RS, Tuncali K, Morrison PR, Tatli S, et al. Inflammatory nodules mimic applicator track seeding after percutaneous ablation of renal tumors. AJR Am J Roentgenol 2007;189:845-848 https://doi.org/10.2214/AJR.07.2015
  20. Zhou W, Herwald SE, Arellano RS. Inflammatory pseudotumor mimics local recurrence following a microwave ablation of renal cell carcinoma. J Vasc Interv Radiol 2021;32:633-634 https://doi.org/10.1016/j.jvir.2020.12.025
  21. Yong C, Mott SL, Laroia ST, Tracy CR. Outcomes of microwave ablation for small renal masses: a single center experience. J Endourol 2020;34:1134-1140 https://doi.org/10.1089/end.2020.0348
  22. Durack JC, Richioud B, Lyon J, Solomon SB. Late emergence of contrast-enhancing fat necrosis mimicking tumor seeding after renal cryoablation. J Vasc Interv Radiol 2014;25:133-137 https://doi.org/10.1016/j.jvir.2013.07.006
  23. Jeong CJ, Park BK, Park JJ, Kim CK. Unenhanced CT and mMRI parameters that can be used to reliably predict fat-invisible angiomyolipoma. AJR Am J Roentgenol 2016;206:340-347 https://doi.org/10.2214/AJR.15.15086
  24. Maccini M, Sehrt D, Pompeo A, Chicoli FA, Molina WR, Kim FJ. Biophysiologic considerations in cryoablation: a practical mechanistic molecular review. Int Braz J Urol 2011;37:693-696 https://doi.org/10.1590/S1677-55382011000600002
  25. Silverman SG, Tuncali K, Morrison PR. MR imaging-guided percutaneous tumor ablation. Acad Radiol 2005;12:1100-1109 https://doi.org/10.1016/j.acra.2005.05.019
  26. Georgiades C, Rodriguez R, Azene E, Weiss C, Chaux A, Gonzalez-Roibon N, et al. Determination of the nonlethal margin inside the visible "ice-ball" during percutaneous cryoablation of renal tissue. Cardiovasc Intervent Radiol 2013;36:783-790 https://doi.org/10.1007/s00270-012-0470-5
  27. Weld KJ, Landman J. Comparison of cryoablation, radiofrequency ablation and high-intensity focused ultrasound for treating small renal tumours. BJU Int 2005;96:1224-1229 https://doi.org/10.1111/j.1464-410X.2005.05848.x
  28. Kim HJ, Park BK, Chung IS. Comparison of general anesthesia and conscious sedation during computed tomography-guided radiofrequency ablation of T1a renal cell carcinoma. Can Assoc Radiol J 2018;69:24-29  https://doi.org/10.1016/j.carj.2017.07.003