Acknowledgement
This work was funded by the National Natural Science Foundation of China (grant number. 82001814) and the National High Level Hospital Clinical Research Funding (grant number. 2022-PUMCH-B-068).
References
- Seyahi E. Takayasu arteritis: an update. Curr Opin Rheumatol 2017;29:51-56 https://doi.org/10.1097/BOR.0000000000000343
- Park SH, Chung JW, Lee JW, Han MH, Park JH. Carotid artery involvement in Takayasu's arteritis: evaluation of the activity by ultrasonography. J Ultrasound Med 2001;20:371-378 https://doi.org/10.7863/jum.2001.20.4.371
- Kerr GS, Hallahan CW, Giordano J, Leavitt RY, Fauci AS, Rottem M, et al. Takayasu arteritis. Ann Intern Med 1994;120:919-929 https://doi.org/10.7326/0003-4819-120-11-199406010-00004
- Park JH, Chung JW, Im JG, Kim SK, Park YB, Han MC. Takayasu arteritis: evaluation of mural changes in the aorta and pulmonary artery with CT angiography. Radiology 1995;196:89-93 https://doi.org/10.1148/radiology.196.1.7784596
- Zhu FP, Luo S, Wang ZJ, Jin ZY, Zhang LJ, Lu GM. Takayasu arteritis: imaging spectrum at multidetector CT angiography. Br J Radiol 2012;85:e1282-e1292 https://doi.org/10.1259/bjr/25536451
- Kim SY, Park JH, Chung JW, Kim HC, Lee W, So YH, et al. Follow-up CT evaluation of the mural changes in active Takayasu arteritis. Korean J Radiol 2007;8:286-294 https://doi.org/10.3348/kjr.2007.8.4.286
- Rotzinger DC, Si-Mohamed SA, Shapira N, Douek PC, Meuli RA, Boussel L. "Dark-blood" dual-energy computed tomography angiography for thoracic aortic wall imaging. Eur Radiol 2020;30:425-431 https://doi.org/10.1007/s00330-019-06336-z
- Rowe SP, Chu LC, Recht HS, Lin CT, Fishman EK. Black-blood cinematic rendering: a new method for cardiac CT intraluminal visualization. J Cardiovasc Comput Tomogr 2020;14:272-274 https://doi.org/10.1016/j.jcct.2019.09.019
- Mileto A, Guimaraes LS, McCollough CH, Fletcher JG, Yu L. State of the art in abdominal CT: the limits of iterative reconstruction algorithms. Radiology 2019;293:491-503 https://doi.org/10.1148/radiol.2019191422
- Brady SL, Trout AT, Somasundaram E, Anton CG, Li Y, Dillman JR. Improving image quality and reducing radiation dose for pediatric CT by using deep learning reconstruction. Radiology 2021;298:180-188 https://doi.org/10.1148/radiol.2020202317
- Xu C, Xu M, Yan J, Li YY, Yi Y, Guo YB, et al. The impact of deep learning reconstruction on image quality and coronary CT angiography-derived fractional flow reserve values. Eur Radiol 2022;32:7918-7926 https://doi.org/10.1007/s00330-022-08796-2
- Otgonbaatar C, Jeon PH, Ryu JK, Shim H, Jeon SH, Ko SM, et al. Coronary artery calcium quantification: comparison between filtered-back projection, hybrid iterative reconstruction, and deep learning reconstruction techniques. Acta Radiol 2023;64:2393-2400 https://doi.org/10.1177/02841851231174463
- Otgonbaatar C, Ryu JK, Shin J, Kim HM, Seo JW, Shim H, et al. Deep learning reconstruction allows for usage of contrast agent of lower concentration for coronary CTA than filtered back projection and hybrid iterative reconstruction. Acta Radiol 2023;64:1007-1017
- Otgonbaatar C, Ryu JK, Shin J, Woo JY, Seo JW, Shim H, et al. Improvement in image quality and visibility of coronary arteries, stents, and valve structures on CT angiography by deep learning reconstruction. Korean J Radiol 2022;23:1044-1054 https://doi.org/10.3348/kjr.2022.0127
- Sato M, Ichikawa Y, Domae K, Yoshikawa K, Kanii Y, Yamazaki A, et al. Deep learning image reconstruction for improving image quality of contrast-enhanced dual-energy CT in abdomen. Eur Radiol 2022;32:5499-5507 https://doi.org/10.1007/s00330-022-08647-0
- Otgonbaatar C, Ryu JK, Kim S, Seo JW, Shim H, Hwang DH. Improvement of depiction of the intracranial arteries on brain CT angiography using deep learning reconstruction. J Integr Neurosci 2021;20:967-976 https://doi.org/10.31083/j.jin2004097
- Wang Y, Chen Y, Liu P, Lv W, Wu J, Wei M, et al. Clinical effectiveness of contrast medium injection protocols for 80-kV coronary and craniocervical CT angiography-a prospective multicenter observational study. Eur Radiol 2022;32:3808-3818 https://doi.org/10.1007/s00330-021-08505-5
- Canon Medical Systems. White paper: advanced intelligent clear-IQ engine (AiCE) deep learning reconstruction: whole organ coverage with extraordinary image quality at the fast pace of medicine [accessed on March 12, 2024]. Available at: https://global.medical.canon/publication
- Iizuka H, Yokota Y, Kidoh M, Oda S, Ikeda O, Tamura Y, et al. Contrast enhancement boost technique at aortic computed tomography angiography: added value for the evaluation of type II endoleaks after endovascular aortic aneurysm repair. Acad Radiol 2019;26:1435-1440 https://doi.org/10.1016/j.acra.2019.01.009
- Otgonbaatar C, Jeon PH, Ryu JK, Shim H, Jeon SH, Ko SM, et al. The effectiveness of post-processing head and neck CT angiography using contrast enhancement boost technique. PLoS One 2023;18:e0284793
- Otgonbaatar C, Ryu JK, Shim H, Jeon PH, Jeon SH, Kim JW, et al. A novel computed tomography image reconstruction for improving visualization of pulmonary vasculature: comparison between preprocessing and postprocessing images using a contrast enhancement boost technique. J Comput Assist Tomogr 2022;46:729-734 https://doi.org/10.1097/RCT.0000000000001347
- Oostveen LJ, Meijer FJA, de Lange F, Smit EJ, Pegge SA, Steens SCA, et al. Deep learning-based reconstruction may improve non-contrast cerebral CT imaging compared to other current reconstruction algorithms. Eur Radiol 2021;31:5498-5506 https://doi.org/10.1007/s00330-020-07668-x
- Chen B, Wang X, Yin W, Gao Y, Hou Z, An Y, et al. Assessment of disease activity in Takayasu arteritis: a quantitative study with computed tomography angiography. Int J Cardiol 2019;289:144-149 https://doi.org/10.1016/j.ijcard.2019.04.086