DOI QR코드

DOI QR Code

Combining Non-Contrast CT Signs With Onset-to-Imaging Time to Predict the Evolution of Intracerebral Hemorrhage

  • Lei Song (Department of Radiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University) ;
  • Xiaoming Qiu (Department of Radiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University) ;
  • Cun Zhang (Department of Radiology, The First Affiliated Hospital of University of Science and Technology of China) ;
  • Hang Zhou (Department of Radiology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science) ;
  • Wenmin Guo (Department of Radiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine) ;
  • Yu Ye (Department of Radiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University) ;
  • Rujia Wang (Department of Radiology, Tangshan Gongren Hospital) ;
  • Hui Xiong (Department of Radiology, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University) ;
  • Ji Zhang (Department of Clinical Laboratory, Xiangyang Central Haspital, Affiliated Hospital of Hubei University of Arts and Science) ;
  • Dongfang Tang (Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science) ;
  • Liwei Zou (Department of Radiology, The Second Affiliated Hospital of Anhui Medical University) ;
  • Longsheng Wang (Department of Radiology, The Second Affiliated Hospital of Anhui Medical University) ;
  • Yongqiang Yu (Department of Radiology, The First Affiliated Hospital of Anhui Medical University) ;
  • Tingting Guo (Department of Nuclear Medicine, Huangshi Central Hospital, Affiliated Hospital of Hubei Polytechnic University)
  • 투고 : 2023.06.29
  • 심사 : 2023.11.19
  • 발행 : 2024.02.01

초록

Objective: This study aimed to determine the predictive performance of non-contrast CT (NCCT) signs for hemorrhagic growth after intracerebral hemorrhage (ICH) when stratified by onset-to-imaging time (OIT). Materials and Methods: 1488 supratentorial ICH within 6 h of onset were consecutively recruited from six centers between January 2018 and August 2022. NCCT signs were classified according to density (hypodensities, swirl sign, black hole sign, blend sign, fluid level, and heterogeneous density) and shape (island sign, satellite sign, and irregular shape) features. Multivariable logistic regression was used to evaluate the association between NCCT signs and three types of hemorrhagic growth: hematoma expansion (HE), intraventricular hemorrhage growth (IVHG), and revised HE (RHE). The performance of the NCCT signs was evaluated using the positive predictive value (PPV) stratified by OIT. Results: Multivariable analysis showed that hypodensities were an independent predictor of HE (adjusted odds ratio [95% confidence interval] of 7.99 [4.87-13.40]), IVHG (3.64 [2.15-6.24]), and RHE (7.90 [4.93-12.90]). Similarly, OIT (for a 1-h increase) was an independent inverse predictor of HE (0.59 [0.52-0.66]), IVHG (0.72 [0.64-0.81]), and RHE (0.61 [0.54-0.67]). Blend and island signs were independently associated with HE and RHE (10.60 [7.36-15.30] and 10.10 [7.10-14.60], respectively, for the blend sign and 2.75 [1.64-4.67] and 2.62 [1.60-4.30], respectively, for the island sign). Hypodensities demonstrated low PPVs of 0.41 (110/269) or lower for IVHG when stratified by OIT. When OIT was ≤ 2 h, the PPVs of hypodensities, blend sign, and island sign for RHE were 0.80 (215/269), 0.90 (142/157), and 0.83 (103/124), respectively. Conclusion: Hypodensities, blend sign, and island sign were the best NCCT predictors of RHE when OIT was ≤ 2 h. NCCT signs may assist in earlier recognition of the risk of hemorrhagic growth and guide early intervention to prevent neurological deterioration resulting from hemorrhagic growth.

키워드

과제정보

We appreciate the statistical consultation and analyses of Cun Zhang, The First Affiliated Hospital of University of Science and Technology of China. We would also like to thank Editage (www.editage.cn) for English language editing.

참고문헌

  1. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the global burden of disease study 2019. Lancet 2020;396:1204-1222
  2. Sheth KN. Spontaneous intracerebral hemorrhage. N Engl J Med 2022;387:1589-1596
  3. Greenberg SM, Ziai WC, Cordonnier C, Dowlatshahi D, Francis B, Goldstein JN, et al. 2022 guideline for the management of patients with spontaneous intracerebral hemorrhage: a guideline from the American Heart Association/American Stroke Association. Stroke 2022;53:e282-e361
  4. Morotti A, Boulouis G, Dowlatshahi D, Li Q, Shamy M, Al-Shahi Salman R, et al. Intracerebral haemorrhage expansion: definitions, predictors, and prevention. Lancet Neurol 2023;22:159-171
  5. Sprigg N, Flaherty K, Appleton JP, Al-Shahi Salman R, Bereczki D, Beridze M, et al. Tranexamic acid for hyperacute primary IntraCerebral Haemorrhage (TICH-2): an international randomised, placebo-controlled, phase 3 superiority trial. Lancet 2018;391:2107-2115
  6. Yogendrakumar V, Moores M, Sikora L, Shamy M, Ramsay T, Fergusson D, et al. Evaluating hematoma expansion scores in acute spontaneous intracerebral hemorrhage: a systematic scoping review. Stroke 2020;51:1305-1308
  7. Yogendrakumar V, Ramsay T, Fergusson D, Demchuk AM, Aviv RI, Rodriguez-Luna D, et al. New and expanding ventricular hemorrhage predicts poor outcome in acute intracerebral hemorrhage. Neurology 2019;93:e879-e888
  8. Li Q, Li R, Zhao LB, Yang XM, Yang WS, Deng L, et al. Intraventricular hemorrhage growth: definition, prevalence and association with hematoma expansion and prognosis. Neurocrit Care 2020;33:732-739
  9. Yogendrakumar V, Ramsay T, Fergusson DA, Demchuk AM, Aviv RI, Rodriguez-Luna D, et al. Redefining hematoma expansion with the inclusion of intraventricular hemorrhage growth. Stroke 2020;51:1120-1127
  10. Yang WS, Zhang SQ, Shen YQ, Wei X, Zhao LB, Xie XF, et al. Noncontrast computed tomography markers as predictors of revised hematoma expansion in acute intracerebral hemorrhage. J Am Heart Assoc 2021;10:e018248
  11. Morotti A, Boulouis G, Dowlatshahi D, Li Q, Barras CD, Delcourt C, et al. Standards for detecting, interpreting, and reporting noncontrast computed tomographic markers of intracerebral hemorrhage expansion. Ann Neurol 2019;86:480-492
  12. Law ZK, Ali A, Krishnan K, Bischoff A, Appleton JP, Scutt P, et al. Noncontrast computed tomography signs as predictors of hematoma expansion, clinical outcome, and response to tranexamic acid in acute intracerebral hemorrhage. Stroke 2020;51:121-128
  13. Al-Shahi Salman R, Frantzias J, Lee RJ, Lyden PD, Battey TWK, Ayres AM, et al. Absolute risk and predictors of the growth of acute spontaneous intracerebral haemorrhage: a systematic review and meta-analysis of individual patient data. Lancet Neurol 2018;17:885-894
  14. Morotti A, Li Q, Mazzoleni V, Nawabi J, Schlunk F, Mazzacane F, et al. Non-contrast CT markers of intracerebral hemorrhage expansion: the influence of onset-to-CT time. Int J Stroke 2023;18:704-711
  15. Dowlatshahi D, Brouwers HB, Demchuk AM, Hill MD, Aviv RI, Ufholz LA, et al. Predicting intracerebral hemorrhage growth with the spot sign: the effect of onset-to-scan time. Stroke 2016;47:695-700
  16. Falcone GJ, Biffi A, Brouwers HB, Anderson CD, Battey TW, Ayres AM, et al. Predictors of hematoma volume in deep and lobar supratentorial intracerebral hemorrhage. JAMA Neurol 2013;70:988-994
  17. Leasure AC, Sheth KN, Comeau M, Aldridge C, Worrall BB, Vashkevich A, et al. Identification and validation of hematoma volume cutoffs in spontaneous, supratentorial deep intracerebral hemorrhage. Stroke 2019;50:2044-2049
  18. Dowlatshahi D, Demchuk AM, Flaherty ML, Ali M, Lyden PL, Smith EE; VISTA Collaboration. Defining hematoma expansion in intracerebral hemorrhage: relationship with patient outcomes. Neurology 2011;76:1238-1244
  19. Wartenberg KE. Attacking intracerebral hemorrhage expansion: noncontrast CT markers on the horizon. Neurology 2020;95:615-616
  20. Cai J, Zhu H, Yang D, Yang R, Zhao X, Zhou J, et al. Accuracy of imaging markers on noncontrast computed tomography in predicting intracerebral hemorrhage expansion. Neurol Res 2020;42:973-979
  21. Quintas-Neves M, Marques L, Silva L, Amorim JM, Ferreira C, Pinho J. Noncontrast computed tomography markers of outcome in intracerebral hemorrhage patients. Neurol Res 2019;41:1083-1089
  22. Kim YS, Chae HY, Jeong HG, Kim BJ, Lee SU, Kang J, et al. Size-related differences in computed tomography markers of hematoma expansion in acute intracerebral hemorrhage. Neurocrit Care 2022;36:602-611
  23. Morotti A, Arba F, Boulouis G, Charidimou A. Noncontrast CT markers of intracerebral hemorrhage expansion and poor outcome: a meta-analysis. Neurology 2020;95:632-643
  24. Bowry R, Parker SA, Bratina P, Singh N, Yamal JM, Rajan SS, et al. Hemorrhage enlargement is more frequent in the first 2 hours: a prehospital mobile stroke unit study. Stroke 2022;53:2352-2360
  25. Nie X, Liu J, Liu D, Zhou Q, Duan W, Pu Y, et al. Haemostatic therapy in spontaneous intracerebral haemorrhage patients with high-risk of haematoma expansion by CT marker: a systematic review and meta-analysis of randomised trials. Stroke Vasc Neurol 2021;6:170-179
  26. Xia X, Ren Q, Cui J, Dong H, Huang Z, Jiang Q, et al. Radiomics for predicting revised hematoma expansion with the inclusion of intraventricular hemorrhage growth in patients with supratentorial spontaneous intraparenchymal hematomas. Ann Transl Med 2022;10:8
  27. Ma C, Wang L, Gao C, Liu D, Yang K, Meng Z, et al. Automatic and efficient prediction of hematoma expansion in patients with hypertensive intracerebral hemorrhage using deep learning based on CT images. J Pers Med 2022;12:779
  28. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol 2017;14:749-762
  29. Zwanenburg A, Vallieres M, Abdalah MA, Aerts HJWL, Andrearczyk V, Apte A, et al. The image biomarker standardization initiative: standardized quantitative radiomics for high-throughput image-based phenotyping. Radiology 2020;295:328-338
  30. Berenguer R, Pastor-Juan MDR, Canales-Vazquez J, Castro-Garcia M, Villas MV, Mansilla Legorburo F, et al. Radiomics of CT features may be nonreproducible and redundant: influence of CT acquisition parameters. Radiology 2018;288:407-415
  31. Cellina M, Ce M, Irmici G, Ascenti V, Caloro E, Bianchi L, et al. Artificial intelligence in emergency radiology: where are we going? Diagnostics (Basel) 2022;12:3223
  32. Nehme A, Ducroux C, Panzini MA, Bard C, Bereznyakova O, Boisseau W, et al. Non-contrast CT markers of intracerebral hematoma expansion: a reliability study. Eur Radiol 2022;32:6126-6135
  33. Jain A, Malhotra A, Payabvash S. Imaging of spontaneous intracerebral hemorrhage. Neuroimaging Clin N Am 2021;31:193-203
  34. Szentes T, Kovacs L, Ovary C. New hospital structure in the twenty-first century: the position of level III (tertiary) neurological and stroke care in a changing healthcare system. Springerplus 2016;5:2039
  35. Wang X, Birch S, Zhu W, Ma H, Embrett M, Meng Q. Coordination of care in the Chinese health care systems: a gap analysis of service delivery from a provider perspective. BMC Health Serv Res 2016;16:571