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MODIFIED GEOMETRIC DISTRIBUTION OF ORDER k

AND ITS APPLICATIONS

JUNGTAEK OH, KYEONG EUN LEE∗

Abstract. We study the distributions of waiting times in variations of

the geometric distribution of order k. Variation imposes length on the
runs of successes and failures. We study two types of waiting time random

variables. First, we consider the waiting time for a run of k consecu-

tive successes the first time no sequence of consecutive k failures occurs
prior, denoted by T (k). Next, we consider the waiting time for a run of

k consecutive failures the first time no sequence of k consecutive successes
occurred prior, denoted by J(k). In addition, we study the distribution of

the weighted average. The exact formulae of the probability mass function,

mean, and variance of distributions are also obtained.
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1. Introduction

The distribution theory of runs and patterns has been considerably devel-
oped in the last decades owing to its theoretical relevance and applications in
various research areas, such as hypothesis testing, system reliability, quality con-
trol, physics, psychology, radar astronomy, molecular biology, computer science,
insurance, and finance. In the past few decades, meaningful progress has been
demonstrated on runs and related statistics in [3] as well as in [6]. More recently,
contributions on the topic have been reported, such as [2], [5], [7], [8], and [1].
Waiting time distributions related to the runs of Bernoulli trials have recently
received immense interest in applied probability. One of the well-known and
extensively researched waiting time distributions is the geometric distribution of
order k, which is defined as the distribution of the number of trials until the first
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occurrence of k consecutive successes in Bernoulli trials with success probability
p. This definition is as per [10].
In weighted averages, some data points have a stronger effect than others, i.e.,
the relative importance or frequencies of some factors or the varying degrees of
the numbers in a data set are incorporated. To calculate the weighted average,
each number in the data set is multiplied by weights that predetermine the rel-
ative importance of each data point. A weighted average can be more accurate
than a simple average, in which all numbers in a data set are treated equally
and assigned equal weights.
The remainder of this paper is organized as follows. In Section 2, we introduce
basic definitions and necessary notations that will be useful throughout this ar-
ticle. In Section 3, we study the waiting time for a run of k consecutive successes
the first time no sequence of k failures occurred prior. We derive the exact prob-
ability mass function (PMF), mean, and variance of T (k) using combinatorial
analysis. In Section 4, we study the waiting time for a run of k consecutive fail-
ures the first time no sequence of k successes occurs prior. Using combinatorial
analysis, we derive the exact PMF, mean, and variance of J (k). In Section 5, we
study the weighted average of T (k) and J (k).

2. Preliminaries

We first recall some definitions and notations used throughout this paper. We
suppose that 0 < q < 1. First, we introduce the following notations:

• L
(1)
n : the length of the longest run of successes in X1, X2, . . . , Xn;

• L
(0)
n : the length of the longest run of failures in X1, X2, . . . , Xn;

• Sn : the total number of successes in X1, X2, . . . , Xn;
• Fn : the total number of failures in X1, X2, . . . , Xn.

We consider a modified geometric distribution of order k. We study the two
types of waiting time random variables, which represent the waiting time for a
run of k consecutive successes the first time no sequence of k failures occurs prior
and the waiting time for a run of k consecutive failures the first time no sequence
of k successes occurs prior, denoted by T (k) and J (k), respectively. We obtain
the recursive scheme for the random variables T (k) and J (k). More specifically,
by taking advantage of the recursive scheme, we obtain nonrecursive formulae
for the computation of the mean and variance of the random variables T (k) and
J (k). Let us consider the random variable X to be a p parameter Bernoulli
random variable, which is independent of T (k). To obtain a run of k consecutive
successes, we must perform a run of k − 1 consecutive successes. This means
that we have already waited for T (k−1). Then, we consider two cases:

(1) If we obtain a new success event with probability p, we have k consecutive
successes. In this case, T (k) is given by T (k−1) + 1, with probability p.
That is given by the parcel X(T (k−1) + 1). Note that X = 1 with
probability p.
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(2) If we obtain a failure event with probability q = 1− p, we must wait for
a new complete sequence of k consecutive successes. That is represented
by the parcel (1−X)(T (k−1)+1+T (k)). Note thatX = 0 with probability
q = 1− p.

We obtain the following recursive scheme satisfied by T (k) from the above men-
tioned cases:

T (k) d
= X(T (k−1) + 1) + (1−X)(T (k−1) + 1 + T (k)). (1)

Similarly, we obtain the following recursive scheme satisfied by J (k):

J (k) d
= (1−X)(J (k−1) + 1) +X(J (k−1) + 1 + J (k)). (2)

Further, the (1) and (2) can be used for the recursive evaluation of the expec-
tation of T (k) and J (k) respectively. Furthermore, using a weighted average, we
consider a new random variable

Wa(k) = aT (k) + (1− a)J (k), 0 < a < 1.

Before proceeding with the main result, note that the total number of integer
solutions is x1 + x2 + · · · + xa = c such that 0 < xi < b for i = 1, 2, . . . , a.
Alternatively, the number of ways of distributing c identical balls into a different
cells with no containing more or equal than b balls is described using [4]

S(a, b, c) =

min(a,[ c−a
b−1 ])∑

j=0

(−1)j
(
a

j

)(
c− j(b− 1)− 1

a− 1

)
.

3. Distribution of T (k)

Let us begin our study of the modified geometric distribution of order k by
presenting some results related to the closed formulae for the PMF, mean, and
variance of the random variables T (k). More specifically, our derivations for
finding the mean and variance of the random variables T (k) are mainly based
on the recursive scheme for the random variables T (k). The exact formulae for
PMF, mean, and variance of the distributions are obtained as follows:

3.1. PMF of T (k). This section derives the PMF of T (k). The following
theorem presents the PMF of T (k).

Theorem 3.1. The PMF f
(1)
T (n) = P (T (k) = n) for n ≥ k is given by f

(1)
T (n) =

pk and

f
(1)
T (n) =

n−k∑
i=1

pn−i(1− p)i
i∑

s=1

S(s, k, i)

[
S(s− 1, k, n− k − i)

+ S(s, k, n− k − i)

]
, n > k.
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Proof. We use arguments similar to those used in [9]. We begin with the study

of f
(1)
T (n). Clearly, f

(1)
T (k) = pk. We now assume n > k and write f

(1)
T (n) as

follows:

f
(1)
T (n) = P

(
L
(1)
n−k < k ∧ L

(0)
n−k < k ∧ Xn−k = 0 ∧ Xn−k+1 = · · · = Xn = 1

)
.

We partition the event T (k) = n into disjoint events given by Fn−k = i, for
i = 1, . . . , n− k. Adding the probabilities, we obtain

f
(1)
T (n) =

n−k∑
i=1

P
(
L
(1)
n−k < k ∧ L

(0)
n−k < k ∧ Fn−k = i ∧ Xn−k = 0 ∧

Xn−k+1 = · · · = Xn = 1
)
.

If the number of 0’s in the first n− k trials is equal to i, that is, Fn−k = i, then
in each of the (n− k + 1) to n-th trials, the probability of success is

pn−k+1 = · · · = pn = p.

If we use E
(0)
n,i to represent the event

{
L
(1)
n < k ∧ L

(0)
n < k ∧ Xn = 0 ∧ Fn = i

}
,

we obtain

f
(1)
T (n) =

n−k∑
i=1

P
(
L
(1)
n−k < k ∧ L

(0)
n−k < k ∧ Fn−k = i ∧ Xn−k = 0

)
× P

(
Xn−k+1 = · · · = Xn = 1

)
=

n−k∑
i=1

P
(
E

(0)
n−k,i

)
pk.

We focus on the event E
(0)
n−k,i. For i = 1, . . . , n − k, a typical element of the

event {L(1)
n−k < k ∧ L

(0)
n−k < k ∧ Fn−k = i} is an ordered sequence consisiting of

n−k− i successes and i failures with the longest success and failure runs having
lengths less than k. We can derive the number of these sequences as follows:
first, we distribute the i failures. Let s (1 ≤ s ≤ i) be the number of failure runs

in the typical element of the event E
(0)
n−k,i. Next, we distribute the n − k − i

successes. We divide it into two cases: starting with a failure run or starting with
a success run. Thus, we distinguish between the two types of sequences in the

event
{
L
(1)
n−k < k ∧ L

(0)
n−k < k ∧ Fn−k = i ∧Xn−k = 0

}
, named (s− 1, s)-type

and (s, s)-type, respectively, which are defined as follows:

(s− 1, s)-type :

y1︷ ︸︸ ︷
0 . . . 0 |

x1︷ ︸︸ ︷
1 . . . 1 |

y2︷ ︸︸ ︷
0 . . . 0 |

x2︷ ︸︸ ︷
1 . . . 1 | . . . |

ys−1︷ ︸︸ ︷
0 . . . 0 |

xs−1︷ ︸︸ ︷
1 . . . 1 |

ys︷ ︸︸ ︷
0 . . . 0,

with i 0’s and n− k − i 1’s, where xj (j = 1, . . . , s− 1) represents the length of
a run of 1’s and yj (j = 1, . . . , s) represents the length of a run of 0’s. Further,



Modified geometric distribution of order k with applications 713

all integers x1, . . . , xs−1 and y1, . . . , ys satisfy the conditions

0 < xj < k for j = 1, ..., s− 1, and x1 + · · ·+ xs−1 = n− k − i,

0 < yj < k for j = 1, ..., s, and y1 + · · ·+ ys = i.

(s, s)-type :

x1︷ ︸︸ ︷
1 . . . 1 |

y1︷ ︸︸ ︷
0 . . . 0 |

x2︷ ︸︸ ︷
1 . . . 1 |

y2︷ ︸︸ ︷
0 . . . 0 |

x3︷ ︸︸ ︷
1 . . . 1 | . . . |

ys−1︷ ︸︸ ︷
0 . . . 0 |

xs︷ ︸︸ ︷
1 . . . 1 |

ys︷ ︸︸ ︷
0 . . . 0,

with i 0’s and n − k − i 1’s, where xj (j = 1, . . . , s) represents the length of a
run of 1’s and yj (j = 1, . . . , s) represents the length of a run of 0’s. Here, all of
x1, . . . , xs and y1, . . . , ys are integers, and satisfy

0 < xj < k for j = 1, ..., s, and x1 + · · ·+ xs = n− k − i,

0 < yj < k for j = 1, ..., s, and y1 + · · ·+ ys = i.

Then, the probability of the event E
(0)
n−k,i is given by

P
(
E

(0)
n−k,i

)
= pn−k−iqi

i∑
s=1

S(s, k, i)
[
S(s− 1, k, n− k − i)

+ S(s, k, n− k − i)
]
.

Therefore, we can compute the probability of the event W
(1)
S = n as follows:

f
(1)
T (n) =

n−k∑
i=1

pn−iqi
i∑

s=1

S(s, k, i)
[
S(s− 1, k, n− k − i) + S(s, k, n− k − i)

]
.

Thus, the proof is completed. □

3.2. Closed formulae for the mean of T (k). In this section, we derive the
closed form of the expectation of T (k). We first derive the closed form of the
expectation of T (2) prior.

Lemma 3.2. The closed form of the expectation E[T (2)] is given by

E
[
T (2)

]
=

2p2

(1− pq)2
+

qp2

1− qp
+

2qp2

(1− qp)2
. (3)

Proof. First, we consider the number of cases where a sequence of two consecu-
tive successes occurs for the first time on the nth trial and no sequence of two
consecutive failures occurs before the nth trial for n = 2, 3, . . .. Examples of
sequences are “SS” for n = 2, “FSS” for n = 3, “SFSS” for n = 4, “FSFSS” for
n = 5, “SFSFSS” for n = 6, “FSFSFSS” for n = 7, etc. Using this argument,
we obtain the expectation of T (2) as follows.

E[T (2)] = 2p2 + 3qp2 + 4pqp2 + 5qpqp2 + 6pqpqp2 + 7qpqpqp2 + · · · (4)

We divide (4) into odd and even-numbered terms. Applying typical mathemat-
ical algebraic arguments, we obtain the expectation of T (2). Thus, the proof is
completed. □
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Next, using Lemma 3.2, we derive the closed form of the expectation of T (k).

Theorem 3.3. The closed form of the expectation of T (k) is given by

E[T (k)] =
1

pk

(
pk − p2

1− p
+

p4[2 + q(3− pq)]

(1− qp)2

)
. (5)

Proof. Taking the expectation of (1), using the linearity of expectations, and
through rearrangement, we obtain: E[T (k)] = E[T (k−1)]+1+E[T (k)]−pE[T (k)].
Applying typical mathematical algebraic arguments, we obtain the recurrence
relation of the expectation of T (k) as follows:

E[T (k)] =
1

p
E[T (k−1)] +

1

p
. (6)

The closed form of the expectation of T (k) can be deduced by iterating (6) and
applying typical mathematical algebraic arguments as follows:

E[T (k)] =
1

pk−2
E[T (2)] +

1

pk−2
+

1

pk−3
+ · · ·+ 1

p2
+

1

p

Using Lemma 3.2, we obtain the closed form of the expectation of T (k); thus,
the proof is completed. □

The following gives the generating function of the means E[T (k)].

Corollary 3.4. The generating function of the means E[T (k)] is given by
∞∑
k=0

E
[
T (k)

]
zk =

A(p, q)z −B(p, q)

(q + p2)2(z − p)(z − 1)
, (7)

where

A(p, q) = 1− pq(1− p− 2p3 + 4p4 − p5 + p6) and

B(p, q) = pq2(1 + p+ 2p2 + 4p3 + p5).

We multiply both sides of the generating function by the denominator of the
right-hand side (RHS) and perform classical analysis on the resulting power
series to yield the following expression for the mean vk = E[T (k)] that satisfies
the recurrence relation:

vk =
1 + p

p
vk−1 −

1

p
vk−2, k ≥ 2. (8)

Equation (7) may also be used to develop nonrecursive expressions for vk. In
particular, using the geometric series for(

1− z

p

)−1

=

∞∑
i=0

(
z

p

)i

and (1− z)
−1

=

∞∑
j=0

zj , (9)

we obtain
∞∑
k=0

E
[
T (k)

]
zk =

[
A(p, q)z −B(p, q)

(q + p2)2(z − p)(z − 1)

] ∞∑
k=0

ckz
k, (10)
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where

ck =

k∑
j=0

pj

pk
=

1− pk+1

pk(1− p)
. (11)

Thus,

vk =
A(p, q)

p(q + p2)2
ck−1 −

B(p, q)

p(q + p2)2
ck for all k ≥ 2.

3.3. Closed formulae for the variance of T (k). To obtain the closed
form of the expectation of V ar[T (k)], we derive V ar[T (2)]. We know that
V ar[T (2)] = E[(T (2))2] − (E[T (2)])2, from the definition of variance. First, we
obtain E[(T (2))2] and derive the variance of T (2).

Lemma 3.5. The closed form of the expectation of
(
T (2)

)2
is given by

E
[(
T (2)

)2]
=

4p2

(1− pq)3
− 4p2

(1− pq)2
+

p2q

1− pq
+

8p2q

(1− qp)3
(12)

Proof. First, we consider the number of cases where a sequence of two consecu-
tive successes occurs for the first time on the nth trial and no sequence of two
consecutive failures occurs before the nth trial for n = 2, 3, . . .. Examples of
sequences are ”SS” for n = 2, ”FSS” for n = 3, ”SFSS” for n = 4, ”FSFSS” for
n = 5, ”SFSFSS” for n = 6, ”FSFSFSS” for n = 7, etc. Using this argument,
we obtain the expectation of E[(T (2))2] as follows:

E
[
(T (2))2

]
=22p2 + 32qp2 + 42pqp2 + 52qpqp2 + 62pqpqp2 + · · · (13)

We divide (13) into odd and even-numbered terms and then apply typical math-
ematical algebraic arguments to obtain the closed form of the expectation of(
T (2)

)2
. Thus, the proof is completed. □

Next, we derive the closed form of the variance of T (2) using Lemma 3.5.

Lemma 3.6. The closed form of the variance of T (2) is given by

V ar
[
T (2)

]
=

p2q(p7 − 2p6 + 6p5 − 11p4 + 16p3 − 11p2 − 7p+ 13

(1− pq)4
. (14)

Proof. Using Lemmas 3.2 and 3.5 and applying typical mathematical algebraic
arguments, we obtain

V ar
[
T (2)

]
=
8p2 + 8p2q

(1− pq)3
− 4p2

(1− pq)2
+

p2q

1− pq
− 4p4

(1− pq)4
− p4q2

(1− qp)2

− 4p4q2

(1− qp)4
− 4p4q

(1− qp)3
− 4p4q2

(1− qp)3
− 8p4q

(1− qp)4
.

Thus, the proof is completed. □

We now obtain the closed form of the variance of T (k).
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Theorem 3.7. The closed form of the variance of T (k) is given by

V
[
T (k)

]
=

A(p, q)

p2kq2(1− pq)4
, (15)

where

A(p, q) =− p2k(1− pq)4 + p5{−1 + p(2 + 2p− 7p2 + 5p3 − 3p4 + p5)}2

+ pk+2q{5− 2k + (8k − 20)p+ (43− 10k)p2 − (6k + 27)p3

+ (40k − 98)p4 + (274− 72k)p5 + (76k − 326)p6

+ (256− 56k)p7 + (28k − 140)p8 + (55− 10k)p9

+ (2k − 15)p10 + 2p11}.

Proof. We begin with the study of E[(T (k))2]. First, by squaring both sides
of the Eq.(1), taking expectation, expanding the right side, and applying the
linearity of expectations, we obtain

E
[
(T (k))2

]
=E

[
{X(T (k−1) + 1)}2

]
+ E

[
{(1−X)(T (k−1) + 1 + T (k))}2

]
+ 2E

[
X(1−X)(T (k−1) + 1)(T (k−1) + 1 + T (k))

]
.

Since either X = 0 or (1−X) = 0, we have

E
[
(T (k))2

]
= E

[
{X(T (k−1) + 1)}2

]
+ E

[
{(1−X)(T (k−1) + 1 + T (k))}2

]
.

As X and T (k) are independent, we obtain

E
[
(T (k))2

]
=E

[
X2

]
E
[
(T (k−1) + 1)2

]
+ E

[
(1−X)2

]
E
[
(T (k−1) + 1 + T (k))2

]
=pE

[
(T (k−1) + 1)2

]
+ (1− p)E

[
(T (k−1) + 1 + T (k))2

]
Expanding the squared terms, applying the linearity of expectations, and alge-
braically simplifying the expression, we obtain

E
[
(T (k))2

]
=E

[
(T (k−1))2 + 2T (k−1) + 1

]
+ (1− p)E

[
(T (k))2 + 2T (k) + 2T (k−1) · T (k)

] (16)

Next, we focus on
(
E[T (k)]

)2
, taking the expectation of (1), and applying typical

mathematical algebraic arguments, we have(
E[T (k)]

)2

=
(
E[T (k−1)]

)2

+ 1 + (1− p)2
(
E[T (k)]

)2

+ 2E[T (k−1)]

+ 2(1− p)E[T (k)] + 2(1− p)E[T (k−1)] · E[T (k)].
(17)
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Using (16) and (17) and algebraically simplifying the expression, we obtain

V ar
[
T (k)

]
=E

[
(T (k−1))2

]
−

(
E[T (k−1)]

)2

+ (1− p)E
[
(T (k))2

]
−
(
1− p

)2 (
E[T (k)]

)2

.

Using the definition of variance, we can rewrite the above equations as follows:

V ar[T (k)] = V ar[T (k−1)] + (1− p)V ar[T (k)] + p(1− p)
(
E[T (k)]

)2

. (18)

The following recursive scheme is deduced using (18):

V ar
[
T (k)

]
=
1

p
V ar

[
T (k−1)

]
+ (1− p)

(
E[T (k)]

)2

. (19)

We iterate (19), and obtain the closed form of the variance of T (k) as follows:

V ar
[
T (k)

]
=

1

pk−2
V ar

[
T (2)

]
+ (1− p)

k−3∑
i=0

1

pi

(
E[T (k−i)]

)2

.

Using Theorem 3.7 and Lemma 3.6, we obtain the closed form of the variance
of T (k) as follows:

V ar
[
T (k)

]
=

1

pk−2

[
4p2 + 8p2q

(1− pq)3
− 4p2

(1− pq)2
+

p2q

1− pq
− 4p4

(1− pq)4

− p4q2

(1− qp)2
− 4p4q2

(1− qp)4
− 4p4q

(1− qp)3
− 4p4q2

(1− qp)3
− 8p4q

(1− qp)4

]

+
(1− p)

p2k

k−3∑
i=0

pi
[
pk−i − p2

1− p
+

p4{2 + q(3− pq)}
(1− pq)2

]2
.

Thus, the proof is completed. □

4. Distribution of J (k)

Let us begin our study of the modified geometric distribution of order k by
presenting some results related to the closed formulae of the PMF, mean, and
variance of the random variables J (k). More specifically, our derivations for
finding the mean and variance of the random variables J (k) are mainly based on
the recursive scheme of the random variables J (k). The exact formulae of the
PMF, mean, and variance of distributions are obtained as follows.

4.1. PMF of J (k). In this section, we shall study PMF of J (k). The following
theorem presents the PMF of J (k).
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Theorem 4.1. The PMF f
(0)
J (n) = P (J (k) = n) for n ≥ k is given by f

(0)
J (n) =

qk and

f
(0)
J (n) =

n−k∑
i=1

pn−k−i qi+k
n−k−i∑
s=1

S(s, k, n− k − i)
[
S(s− 1, k, i) + S(s, k, i)

]
.

Proof. We use arguments similar to those used in [9]. We begin with the study

of f
(0)
J (n). Clearly, f

(0)
J (k) = qk. We now assume n > k and write f

(0)
J (n) as

follows:

f
(0)
J (n) = P

(
L
(1)
n−k < k ∧ L

(0)
n−k < k ∧ Xn−k = 1 ∧ Xn−k+1 = · · · = Xn = 0

)
.

We partition the event J (k) = n into disjoint events given by Fn−k = i, for
i = 1, . . . , n− k. Adding the probabilities, we have

f
(0)
J (n) =

n−k∑
i=1

P
(
L
(1)
n−k < k ∧ L

(0)
n−k < k ∧ Fn−k = i ∧ Xn−k = 1 ∧

Xn−k+1 = · · · = Xn = 0
)
.

If we use E
(1)
n,i to represent the event

{
L
(1)
n < k ∧ L

(0)
n < k ∧ Xn = 1 ∧ Fn = i

}
,

we obtain

f
(0)
J (n) =

n−k∑
i=1

P
(
L
(1)
n−k < k ∧ L

(0)
n−k < k ∧ Fn−k = i ∧ Xn−k = 1

)
× P

(
Xn−k+1 = · · · = Xn = 0

)
=

n−k∑
i=1

P
(
E

(1)
n−k,i

)
qi+k.

We focus on the event E
(1)
n−k,i. For i = 1, . . . , n − k, a typical element of the

event {L(1)
n−k < k ∧ L

(0)
n−k < k ∧ Fn−k = i} is an ordered sequence that consists

of n− k− i successes and i failures in a way that the longest success and failure
runs have lengths shorter than k. We can derive the number of these sequences
as follows.: first, we distribute the i failures. Let s (1 ≤ s ≤ i) be the number

of failure runs in the typical element of the event E
(1)
n−k,i. Next, we distribute

the n− k − i successes. We divide it into two cases: starting with a success run
and starting with a failure run. Thus, we distinguish between the two types of

sequences in the event
{
L
(1)
n−k < k ∧ L

(0)
n−k < k ∧ Fn−k = i

}
, named (s−1, s)-

type and (s, s)-type, respectively, which are defined as follows:

(s, s− 1)-type :

x1︷ ︸︸ ︷
1 . . . 1 |

y1︷ ︸︸ ︷
0 . . . 0 |

x2︷ ︸︸ ︷
1 . . . 1 |

y2︷ ︸︸ ︷
0 . . . 0 | . . . |

ys−1︷ ︸︸ ︷
0 . . . 0 |

xs︷ ︸︸ ︷
1 . . . 1,
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with i 0’s and n − k − i 1’s, where xj (j = 1, . . . , s) represents the length of a
run of 1’s and yj (j = 1, . . . , s−1) represents the length of a run of 0’s. Further,
all integers x1, . . . , xs and y1, . . . , ys−1 satisfy the conditions

0 < xj < k for j = 1, ..., s, and x1 + · · ·+ xs = n− k − i,

0 < yj < k for j = 1, ..., s− 1, and y1 + · · ·+ ys−1 = i.

(s, s)-type :

y1︷ ︸︸ ︷
0 . . . 0 |

x1︷ ︸︸ ︷
1 . . . 1 |

y2︷ ︸︸ ︷
0 . . . 0 |

x2︷ ︸︸ ︷
1 . . . 1 |

y3︷ ︸︸ ︷
0 . . . 0 | . . . |

ys︷ ︸︸ ︷
0 . . . 0 |

xs︷ ︸︸ ︷
1 . . . 1,

with i 0’s and n − k − i 1’s, where xj (j = 1, . . . , s) represents the length of a
run of 1’s and yj (j = 1, . . . , s) represents the length of a run of 0’s. Here, all of
x1, . . . , xs and y1, . . . , ys are integers and satisfy

0 < xj < k for j = 1, ..., s, and x1 + · · ·+ xs = n− k − i,

0 < yj < k for j = 1, ..., s, and y1 + · · ·+ ys = i.

Then, the probability of the event E
(1)
n−k,i is given by

P
(
E

(1)
n−k,i

)
= pn−k−i qi

n−k−i∑
s=1

S(s, k, n− k − i)
[
S(s− 1, k, i) + S(s, k, i)

]
.

Therefore, we can compute the probability of the event J (k) = n as follows:

f
(0)
J (n) =

n−k∑
i=1

P
(
E

(1)
n−k,i

)
qk

=

n−k∑
i=1

pn−k−i qi+k
n−k−i∑
s=1

S(s, k, n− k − i)
[
S(s− 1, k, i) + S(s, k, i)

]
.

Thus, the proof is completed. □

4.2. Closed formulae for the mean of J (k). In this section, we derive the
closed form of the expectation of J (k). We first derive the closed form of the
expectation of J (2).

Lemma 4.2. The closed form of the expectation of J (2) is given by

E
[
J (2)

]
=

2q2

(1− qp)2
+

pq2

1− pq
+

2pq2

(1− pq)2
. (20)

Proof. We use arguments similar to those used in Lemma 3.2 for the proof. □

Next, using Lemma 4.2, we derive the closed form of the expectation of T (k).

Theorem 4.3. The closed form of the expectation of E[J (k)] is given by

E
[
J (k)

]
=

1

qk

[
qk − q2

1− q
+

q4{2 + p(3− pq)}
(1− pq)2

]
, (21)

Proof. We use arguments similar to those used in Theorem 3.3. □
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The following gives the generating function of the mean E[J (k)].

Corollary 4.4. The generating function of the mean E[J (k)] is given by

∞∑
k=0

E
[
J (k)

]
zk =

C(p, q)z +D(p, q)

(q + p2)2(z − q)(z − 1)
, (22)

where

C(p, q) = 1− pq(1− p− 2p3 + 4p4 − p5 + p6) and

D(p, q) = p2q(p5 − 5p4 + 14p3 − 24p2 + 22p− 9).

Wemultiply both sides of the generating function by the denominator of the RHS
and perform classical analysis on the resulting power series to yield the following
expression for the mean uk = E[J (k)] that satisfies the recurrence relation:

uk =
1 + q

q
uk−1 −

1

q
uk−2, k ≥ 2. (23)

Equation (23) may also be used to develop nonrecursive expressions for uk. In
particular, using the geometric series for(

1− z

q

)−1

=

∞∑
i=0

(
z

q

)i

and (1− z)
−1

=

∞∑
j=0

(z)
j
, (24)

we obtain

∞∑
k=0

E
[
J (k)

]
zk =

[
C(p, q)z +D(p, q)

] ∞∑
k=0

bkz
k, (25)

where

C(p, q) =
{1− pq(1− p− 2p3 + 4p4 − p5 + p6)}

q(q + p2)2
,

D(p, q) =
p2q(p5 − 5p4 + 14p3 − 24p2 + 22p− 9)

q(q + p2)2
and

bk =

k∑
j=0

qj

pk
=

1− qk+1

qk(1− q)
.

Thus

uk =
{1− pq(1− p− 2p3 + 4p4 − p5 + p6)}

q(q + p2)2
bk−1

+
p2q(p5 − 5p4 + 14p3 − 24p2 + 22p− 9)

q(q + p2)2
bk,

for all k ≥ 2.
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4.3. Closed formulae of the variance of J (k). To obtain the closed form of
the expectation of V ar[J (k)], we need to derive of V ar[J (2)]. We already known
that V ar[J (2)] = E[(J (2))2] − (E[J (2)])2 from the definition of variance. First,
we obtain E[(J (2))2] and derive the variance of J (2).

Lemma 4.5. The closed form of the expectation of E[(J (2))2] is given by

E

[(
J (2)

)2
]
=

8q2

(1− qp)3
− 4q2

(1− qp)2
+

pq2

1− pq
+

8pq2

(1− pq)3
(26)

Proof. We use arguments similar to those used in Theorem 3.5. □

Next, we derive the closed form of the variance of T (2) using Lemma 4.5.

Lemma 4.6. The closed form of the variance of J (2) is given by

V ar
[
J (2)

]
=

pq2
{
5 + p2(22− 27p+ 24p2 − 15p3 + 5p4 − p5)

}
(1− pq)4

. (27)

Proof. We use arguments similar to those used in Lemma 3.6. □

We now obtain the closed form of the variance of J (k).

Theorem 4.7. The closed form of the variance of J (k) is given by

V
[
J (k)

]
=

B(p, q)

p2q2k(1− pq)4
, (28)

where

B(p, q) =− q2k(1− pq)4 + q5(1− 4p+ 4p2 + 3p3 − 5p4 + 3p5 − p6)2

+ pq2+k{9− 2k − 2(23− 6k)p+ 5(19− 6k)p2 − (71− 38k)p3

− 2(9 + 10k)p4 + 4(18− 5k)p5 − 12(5− 4k)p6 + 24(1− 2k)p7

+ 2(5 + 14k)p8 − 5(3 + 2k)p9 + (7 + 2k)p10 − 2p11}

Proof. We use arguments similar to those used in Theorem 3.7. □

5. Weighted average of Tk and Jk

This section studies the weighted average of Tk and Jk. Let Wa(k) = aT (k) +
(1− a)J (k), 0 < a < 1. Next, we obtain the expectation and variance of Wa(k).
First, we study the expectation of Wa(k).

Theorem 5.1. For 0 < a < 1, the expectation of Wa(k) is given by

E [Wa(k)] =
a

pk−2

[
2p2

(1− pq)2
+

p2q

1− pq
+

2p2q

(1− pq)2
+

1− pk−2

1− p

]
+

(1− a)

qk−2

[
2q2

(1− pq)2
+

pq2

1− pq
+

2pq2

(1− pq)2
+

1− qk−2

1− q

]
.

Proof. Applying the linearity of expectations, we obtain E[aT (k)+(1−a)J (k)] =
aE[T (k)] + (1− a)E[J (k)], which can be proved using Theorems 3.3 and 4.3. □
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Next, we obtain the variance of Wa(k).

Theorem 5.2. For 0 < a < 1, the variance of Wa(k) is given by

V ar [Wa(k)] =
a2A(p, q) + (1− a)2B(p, q)

p2q2k(1− pq)4
, (29)

where

A(p, q) =− p2k(1− pq)4 + p5{−1 + p(2 + 2p− 7p2 + 5p3 − 3p4 + p5)}2

+ pk+2q{5− 2k + (8k − 20)p+ (43− 10k)p2 − (6k + 27)p3

+ (40k − 98)p4 + (274− 72k)p5 + (76k − 326)p6

+ (256− 56k)p7 + (28k − 140)p8 + (55− 10k)p9 + (2k − 15)p10 + 2p11}.
and

B(p, q) =− q2k(1− pq)4 + q5(1− 4p+ 4p2 + 3p3 − 5p4 + 3p5 − p6)2

+ pq2+k{9− 2k − 2(23− 6k)p+ 5(19− 6k)p2 − (71− 38k)p3

− 2(9 + 10k)p4 + 4(18− 5k)p5 − 12(5− 4k)p6 + 24(1− 2k)p7

+ 2(5 + 14k)p8 − 5(3 + 2k)p9 + (7 + 2k)p10 − 2p11}

Proof. Based on the definition of variance, we have V ar[Wa(k)] = E[{(aT (k) +
(1 − a)J (k)) − (aµk + (1 − a)νk)}2]. Because E is linear, e.g., E[aX + b] =
aE[X] + b. Hence, V ar[Wa(k)] = a2E[(T (k) − µk)

2] + (1− a)2E[(J (k) − νk)
2] +

a(1 − a)E[(T (k) − µk)(J
(k) − νk)]. As the random variables T (k) and J (k) are

independent, V ar[Wa(k)] = a2V ar[T (k)]+(1−a)2V ar[J (k)], which can be proved
using Theorems 3.7 and 4.7. □
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