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PICTURE PROCESSING ON ISOMETRIC FUZZY

REGULAR ARRAY LANGUAGES

A. JOHN KASPAR, D.K. SHEENA CHIRISTY∗ AND D.G. THOMAS

Abstract. Isometric array grammar is one of the simplest model to gen-
erate picture languages, since both sides of its production rule have the

same shape. In this paper, we have introduced isometric fuzzy regular

array grammars to generate isometric fuzzy regular array languages and
discussed its closure properties. Also, the relation between isometric fuzzy

regular array grammar and boustrophedon fuzzy finite automata has been

discussed. Moreover, we study the relation between two dimensional fuzzy
regular grammars with returning fuzzy finite automata and boustrophedon

fuzzy finite automata. Further, the hierarchy results of these three classes

of languages have been discussed.
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1. Introduction

A two dimensional word also termed as a picture (matrix, array), is repre-
sented by a rectangular array of symbols taken from a finite alphabet. A two
dimensional language or a picture language is a collection of pictures. Many re-
searchers investigated the properties and complexity results of two dimensional
automata, which operate on two dimensional words. The deep survey of vari-
ous classes of two dimensional languages and their properties can be found in
[4, 5, 7, 15, 17, 18, 20]. Among these classes, the Siromoney matrix model
[21] and isotonic (isometric) array grammars introduced in [14] are the simplest
models to describe picture languages. The Siromoney matrix model [21] and its
extension of array grammars and array automata are very useful models in the
generation of picture languages. The advantages of these models are described
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in [18, 19]. On the other hand, isometric array grammars introduced by Rosen-
feld [14], have the advantage that each side of the production rules has the same
shape. The hierarchy results and properties of isometric array languages have
been discussed and studied in [3, 15, 22]. H. Fernau et al.[4] introduced one of
the elegant model called boustrophedon finite automata (BFA) for two dimen-
sional languages. The name Boustrophedon is derived from the ancient Greek
word which means “as the ox turns”. The BFA processes the input-bordered
arrays, with the head moving one after the other on every computation step
and changing its direction only when the borders of the input array are visited.
They have introduced returning finite automata (RFA) and proved its equiva-
lence with BFA. They discussed the relation between regular matrix languages
[21] and isometric array languages [14] with BFA. Also, the possible applications
of the BFA model is discussed.

Recently, an extension of one dimensional fuzzy regular languages to two di-
mensional (picture) fuzzy regular languages (2-FRLs) has been introduced in
[8], where the basic concepts of fuzzy languages are extended to the picture
languages introduced by R. Siromoeny and G. Siromoney [21]. Also, discussed
the application of 2-FRLs in the generation geometric and asanapalakai kolam
patterns. The concept of fuzzy sets was first found by Zadeh to deal with real-
life problems having uncertainties, vagueness and imprecise data [25, 10]. The
notion of fuzzy automata was initiated by Wee in [24], which is the generalisa-
tion of finite automata [6, 12]. Wee and Fu [23] introduced the mathematical
formulation of fuzzy finite automata. Zadeh and Lee initiated fuzzy languages
generated by fuzzy grammars to reduce the vagueness that occurs in formal lan-
guages [6, 12]. The depth knowledge about various types of fuzzy languages and
fuzzy automata can be seen in [1, 2, 11, 13, 16]. In [9], introduced boustro-
phedon fuzzy finite automata (BFFA), returning fuzzy finite automata (RFFA)
and demonstrated how a picture is processed by BFFA and RFFA. The concept
of pumping lemma and interchanging lemma for the languages accepted by the
BFFA has been studied. Also, discussed the closure properties such as union, in-
tersection, complementation and concatenation of the accepted fuzzy languages
of BFFA.

Motivated by the work presented in [4], in this paper we introduce isometric
fuzzy regular array languages generated by isometric fuzzy regular grammars
and discuss their closure properties. We also study their connection with RFFA
as well as with BFFA. Furthermore, discuss the relation of BFFA with two
dimensional fuzzy regular languages [8].

This paper is organized as follows: The basic notions of two dimensional
languages (regular matrix languages and isometric array languages), two dimen-
sional fuzzy regular languages, boustrophedon fuzzy finite automata and retrun-
ing fuzzy finite automata are recalled in Section 2. In Section 3, isometric fuzzy
regular array grammars and languages generated by it have been introduced and
studied its equivalence with BFFA. The closure properties of isometric fuzzy reg-
ular array languages have been discussed. The equivalence of 2-FRL with RFFA
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and BFFA is discussed in Section 4. In Section 5, we study the hierarchy re-
sults of two dimensional fuzzy regular languages, isometric fuzzy regular array
languages and the languages accepted by boustrophedon fuzzy finite autoamata.

2. Preliminaries

The basics of regular matrix grammar, regular matrix languages and their
properties of corresponding class of picture languages can be found in [17, 21].
Isotonic (isometric) array grammar, isometric array languages and the proper-
ties of isometric array languages are recalled from [4, 14, 15]. The notions of
two dimensional fuzzy right linear grammar (2-FRLG) and their properties can
be found in [8]. Boustrophedon fuzzy finite automata, returning fuzzy finite
automata and their results can be recalled from [9].

Definition 2.1. [8]
A two dimensional fuzzy right - linear grammar (2-FRLG) is a two-tuple

G = (Gh, Gv), where Gh and Gv are fuzzy right - linear grammars. Now,

• Gh = (Vh, Ih, Ph, Sh),
� Vh represents a collection of finite horizontal non-terminals,
� Ih represents a collection of finite intermediates,
� Sh represents a finite fuzzy subset of start symbols from Vh,
� Ph represents a collection of finite fuzzy horizontal production rules

of the form α
ρ−→ xβ or α

ρ−→ x, where ρ ∈ (0, 1] is the grade
of membership of the production rules, α, β ∈ Vh, x ∈ I∗h and
Vh ∩ Ih = ∅. and

• Gv =
k⋃

i=1

Gvi where, Gvi = (Vvi , Iv, Pvi
, Si), i = 1, 2, . . . , k,

� Vvi represents a collection of finite vertical non-terminals such that
Vvi ∩ Vvj = ∅ for i ̸= j,

� Iv represents a collection of finite terminals,
� Si ∈ Vvi represents the fuzzy start symbol and
� Pvi are represents a collection of finite fuzzy vertical production

rules of the form A
σ−→ cB or A

σ−→ c, A, B ∈ Vvi and c ∈ Iv, where
σ ∈ (0, 1] is membership grade of the production rules.

Derivation of the matrix from the given 2-FRLG and the degree of member-
ship of the matrix are given in [8].

Definition 2.2. [8]
A m× n matrix W is said to be generated by the 2-FRLG G, if,

SG(W ) = max
S∈Sh

{min{(S(S) ∧ S(S
∗
=⇒ y)), {

k∨
i=1

(S(Si) ∧ S(Si
∗
=⇒ xi))}}} > 0, where

SG(W ) is the membership grade of the matrix W generated by the 2-FRLG G.
The two dimensional fuzzy regular language (2-FRL) is consisting of the set

of all matrices, which are all generated by the 2-FRLG G and is denoted by
LM (G).
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Note 1. S(y) > 0 represents the membership grade of y ∈ Vh/Vvi . The grade
of membership ρ of H is also represented by ρ/H and the membership value of

the derivation chain from α to β is denoted by S(α
∗
=⇒ β), where α, β belongs

to either {Vh ∪ Ih}∗ or {Vvi ∪ Tv}∗.

Definition 2.3. [9] A boustrophedon fuzzy finite automaton (BFFA) is a sep-
tuple M = (Q, Σ, R, s, F, #, □), in which,

• Q represents a collection of finite states.
• Σ represents a collection of input alphabets.
• s ∈ Q represents fuzzy initial state with S(s) ∈ [0, 1] denotes the mem-
bership value of the state to be an initial state.

• F ⊆ Q represents a collection of fuzzy final states with S(f) ∈ [0, 1]; ∀f ∈
F , where S(f) denotes the membership value of the state to be final

• # /∈ Σ represents a special symbol called the border symbol of the
rectangular pictures.

• □ /∈ Σ represents a new symbol used to represent the erased positions
of the picture while scanning.

• R : Q × Σ × Q → [0, 1] represents a finite collection of fuzzy transition
rules (the membership value of the rule is 1 if the automata reads the
border symbol).

working and configuration of BFFA are explained in [9]

Definition 2.4. [9] A two dimensional word W is said to be accepted by the
BFFAM, if the membership value of the word S(W ) = {S(s)∧(∨(∧R∗(s,W, f))∧
S(f)} > 0, for some f ∈ F .

Definition 2.5. [9]
L(M) represents the two dimensional fuzzy language accepted by the BFFA

M and is defined by

L(M) = {W = [aij ]m×n / W is accepted BFFA M}.

Definition 2.6. [9] A returning fuzzy finite automata (RFFA) is a sep-tuple
M = (Q,Σ,R, s, F,#,□) described same as like in BFFA where as the RFFA
always scans the picture from left to right. That is, The RFFA differs from
BFFA by its configuration as follows:

Now, a configuration (q,W,m), where q ∈ Q, W denotes the two dimensional
word and m denotes the current row, is valid only when 1 ≤ m ≤ |W |r and ∀i,
1 ≤ i ≤ m − 1, the ith row has entries #□|W |c−2#, ∀j, m + 1 ≤ j ≤ |W |r, the
jth row has entries #w#, w ∈ Σ|W |c−2 and for some k, 0 ≤ k ≤ |W |c − 2, w ∈
Σ|W |c−k−2, the mth row equals #□kw#.

Theorem 2.7. [9] Let Σ be a given alphabet then the language accepted by the
BFFA is equivalent to the language accepted by the RFFA. (i.e., L(BFFA)=
L(RFFA) over the same alphabet Σ.)
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Example 2.8. The fuzzy language L\ consists of m × n matrices whose main
diagonal filled by one and all other entries filled by zeros cannot be accepted by
any BFFA.

By using the pumping lemmas and interchanging lemmas stated in [9], it is
clear to see that L\ is not accepted any BFFA.

3. Isometric Fuzzy Regular Array Grammars - Boustrophedon Fuzzy
Finite Automata relation

In this section, we have introduced isometric fuzzy regular array grammars
(IFRAG) and isometric fuzzy regular array languages (IFRAL) generated by
IFRAGs. Also, proved the equivalence between IFRAG and BFFA. To study
the relationship between IFRAG and BFFA, we first introduced a new notion
called direction aware BFFA (dir-BFFA) in the following definition and proved
its equivalence with BFFA.

Definition 3.1. A BFFA M = (Q,Σ,R, s, F,#,□) is said to be a direction
aware BFFA (dir-BFFA), when there exits a mapping

−→ : Q → {l, r} such that −→p = −→q for every fuzzy transition rule pa
ρ−→ q where

a ∈ Σ; ρ ∈ (0, 1] and −→p ̸= −→q for every fuzzy transition rule p#
ρ−→ q where

ρ ∈ (0, 1]. Further, −→s = r.

Lemma 3.2. L(BFFA) = L(dir −BFFA)

Proof. Proof of L(dir − BFFA) ⊆ L(BFFA) is trivial, since dir-BFFAs are
special cases of BFFAs. The idea behind the proof of L(BFFA) ⊆ L(dir −
BFFA) is to track the direction of change in the second part of the state based
on whether rows with odd or even numbers are read. □

3.1. Isometric Fuzzy Regular Array Language. In this section, we have
defined isometric fuzzy regular array grammar and isometric fuzzy regular ar-
ray language. Also, exemplified the generation of isometric fuzzy regular array
languages.

Definition 3.3. An isometric fuzzy regular array grammar (IFRAG) G is a
5-tuple G = (N, I, P, S,□), in which

• N represents a collection of finite alphabets called non-terminals,
• I represents a collection of finite alphabets called terminals,
• S ∈ V called the fuzzy start variable with S(S) = ρ ∈ (0, 1] represents

the membership value of S to be the fuzzy start variable of G,
• □ represents the blank symbol,

• P represents the collection of fuzzy production rules of the form □A
ρ−→

Ba, A□
ρ−→ aB,

□
A

ρ−→ B
a

,
A
□

ρ−→ a
B

and A
ρ−→ a, in which A,B ∈

N, a ∈ I and ρ ∈ (0, 1].
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The derivation of an array from an isometric regular array grammar is de-
scribed below:

• At first, the entire plane is filled with the blank symbols.
• Then, the fuzzy start variable S ∈ N is placed on some position of the
plane with membership value ρ, by replacing □, where (ρ = S(S)).

• On the middle stage, we seen that the non-blank symbols in the plane
are all terminal symbols but there exists one non-terminal symbol in the
plane say, A ∈ N .

� The fuzzy production rules of the form □A
ρ−→ Ba can be applied,

if the position left of A is blank; in this case, the blank symbol on
the left of A is replaced by B and then A is replaced by a with
membership value ρ. This type of rule is represented as left fuzzy
production rules.

� The fuzzy production rules of the form A□
ρ−→ bB can be applied in

similar way, if the position right of A is blank then. Applying such
rule implements a right movement.

� The fuzzy production rules of the form
□
A

ρ−→ B
a

can be applied,

if the position above of A is blank then. This represents an upward
movement.

� The fuzzy production rules of the form
A
□

ρ−→ a
B

can be applied,

if the position below of A is blank then. This represents a downward
movement.

At any derivation step, the fuzzy production rules of the form A
ρ−→ a can be

applied and the terminal array is obtained.

Definition 3.4. if S(W ) = S(S) ∧ (∨(S ∗
=⇒ W )) > 0, where S ∈ N , S(S) > 0

and S(W ) is the membership value of the matrix W of size m× n generated by
the IFRAG G then the matrix W is generated by the IFRAG G.

The isometric fuzzy regular array language (IFRAL) generated by a IFRAG
G is represented by L(G) and is defined by

L(G) = {W = [aij ]m×n/W is generated by IFRAG G}.

Notation: Lrec(G) denotes the collection of all two dimensional words generated
by IFRAG G, in which all the entries of any two dimensional word does not
contain a blank symbol □. That is, the language consists of rectangular arrays
whose all entries are filled with symbols taken from a finite alphabet.

Example 3.5. Consider a IFRAG G = (N, I, P, S,□), where
N = {S,A,B,E, F}, I = {Z, ∗}, S ∈ N represents the fuzzy start variable with



Picture Processing on Isometric Fuzzy Regular Array Languages 489

S(S) = 0.8, □ - blank symbol and

P ={S□ 0.3−−→ ZA,A□
0.4−−→ ∗A,□B

0.6−−→ B∗, E□
0.2−−→ ZE,□F

0.6−−→ FZ,

A
□

0.8−−→ ∗
B

,
A
□

0.9−−→ ∗
F

,
B
□

0.6−−→ Z
E

,E
0.8−−→ Z,F

0.9−−→ Z}.

The IFRAL L(G) consists of m×n matrices describing L token with membership
value 0.3, for m = 2, n = 2 and 0.2 for m, n ≥ 3.

The generation of L token of size 2 × 2 matrix W by IFRAG G is described
below:

□ □
□ □

0.8
==⇒ S □

□ □
0.3
==⇒ Z A

□ □
0.9
==⇒ Z ∗

□ F
0.6
==⇒ Z ∗

F ∗
0.9
==⇒ Z ∗

Z Z

The degree of derivabilty of W describing token L with S(S) = 0.8 is S(S) ∧
(∨(S(S ∗

=⇒ X))) = 0.8 ∧ (∨(0.3 ∨ 0.9 ∨ 0.6 ∨ 0.9)) = 0.8 ∧ 0.3 = 0.3.

Hence, the 2 × 2 matrix describing token L with membership value 0.3 gen-
erated by IFRAG is in L(G).

Example 3.6. Consider the IFRAG G = (N, I, P, S,□), where
N = {S,A,B,C,D,E, F}, I = {0, 1}, S is the fuzzy start variable with S(S) =
0.9, □ is the blank symbol and

P ={ □
S

0.8−−→ A
1

,
□
A

0.7−−→ A
0

,
B
□

0.8−−→ 1
F

,
C
□

0.6−−→ 0
C

,
□
H

0.6−−→ E
0

,

□
E

0.5−−→ A
1

,
F
□

0.6−−→ 0
C

,□A
0.6−−→ B0,□B

0.6−−→ B0, C□
0.5−−→ OH,

H□
0.8−−→ 0H,S

0.7−−→ 1, F□
0.6−−→ 0, E

0.7−−→ 1}.

The language generated by IFRAG is L\ consists of m × n,m, n = 1, 2, . . .
whose main diagonal is filled by one and all other entries are filled by zero with
membership value 0.7 when m = n = 1, 0.6 when m = n = 2 and m = n ≤ 3.

Definition 3.7. If the IFRAG G has no left ( right/ upwards / downwards )
movements then it is represented by L− IFRAG ( R− IFRAG / U − IFRAG
/ D − IFRAG , respectively). Let X ∈ {U,D,L,R}. Then,

L(X − IFRAG) = {L(G) : G is a X − IFRAG over I}.
Lrec(X − IFRAG) = {Lrec(G) : G is an X − IFRAG over I}.

3.2. Closure properties of Isometric Fuzzy Regular Array Languages.
In this section, we have defined and discussed the closure properties of IFRAL
such as reflection about the right-most vertical, reflection about the base (hori-
zontal) and transpose

Definition 3.8. If W is a matrix as given below, then the reflection about the
right-most vertical, reflection about the base and transpose are represented by
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Rv(W ), Rh(W ) and T (W ) respectively and they are defined as follows.

W =
u11 . . . u1n

. . . . . . . . .
um1 . . . umn

Rv(W ) =
u1n . . . u11

. . . . . . . . .
umn . . . um1

Rh(W ) =
um1 . . . umn

. . . . . . . . .
u11 . . . u1n

T (W ) =
u11 . . . um1

. . . . . . . . .
u1n . . . umn

The transpose of a IFRAL Lrec is denoted by T (Lrec) and is defined by
T (Lrec) = {T (W )/W ∈ Lrec}. The reflection about the right-most vertical and
reflection about the base of the IFRAL are defined in the similar way.

Theorem 3.9. The isometric fuzzy regular array languages are closed under the
operations reflection about the right-most vertical, reflection about the base and
transpose.

Proof. The closure of reflection about vertical of IFRAL is described below.
Let Lrec be the isometric fuzzy regular array language generated by IFRAG

G = (N, I, P, S,□). Construct another IFRAG
G′ = (N ′, I ′, P ′, S′,□) such that N ′ = N , I ′ = I, S′ is fuzzy start variable
corresponding to fuzzy start variable S with S(S′) = S(S), □ is blank symbol
and P ′ of G′ is defined as follows:

All the fuzzy production rules in P of the form
□
A

ρ−→ B
a

,
A
□

ρ−→ a
B

and A
ρ−→ a, where A,B ∈ N, a ∈ I and ρ ∈ (0, 1] are defined in P ′ exactly

as in P . For each fuzzy production rule of the form □A
ρ−→ Ba;A,B ∈ N,

a ∈ I and ρ ∈ (0, 1] in P add the fuzzy production rule A□
ρ−→ aB;A,B ∈ N ′,

a ∈ I ′ and ρ ∈ (0, 1] in P ′ and for each fuzzy production rule of the form

A□
ρ−→ aB;A,B ∈ N, a ∈ I and ρ ∈ (0, 1] in P add the fuzzy production rule

□A
ρ−→ Ba;A,B ∈ N ′, a ∈ I ′ and ρ ∈ (0, 1] in P ′.

By the above construction of G′, it is clear to see that, if Lrec(G) is a IFRAL
generated by IFRAG G then Lrec(G

′) is also a IFRAL, which is the reflection
about vertical of the IFRAL Lrec(G).

Hence, if Lrec is a isometric fuzzy regular array language then its reflection
about vertical Rv(Lrec) is also a isometric fuzzy regular array language.

i.e., The class of isometric fuzzy regular array languages are closed under
reflection about the vertical.

The other closure properties can be similarly proved. □

Corollary 3.10.
• Rv(Lrec(R− IFRAG)) = Lrec(L− IFRAG),

Rv(Lrec(L− IFRAG)) = Lrec(R− IFRAG),
• Rh(Lrec(U − IFRAG)) = Lrec(D − IFRAG),

Rh(Lrec(D − IFRAG)) = Lrec(U − IFRAG),
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• T (Lrec(L− IFRAG)) = Lrec(U − IFRAG),
T (Lrec(U − IFRAG)) = Lrec(L− IFRAG),
T (Lrec(D − IFRAG)) = Lrec(R− IFRAG),
T (Lrec(R− IFRAG)) = Lrec(D − IFRAG).

3.3. Relation between IFRAL and BFFA. In this section, we have dis-
cussed the relation between the language generated by isometric fuzzy regular
array grammars and the language accepted by boustrophedon fuzzy finite au-
tomata.

Theorem 3.11. L(BFFA) = Lrec(U − IFRAG).

Proof. Let M = (Q,Σ,R, (s, r), F,#,□) be a dir-BFFA. We can construct a
IFRAG G = (N, I, P, S,□) such that

• N = Q × {l, r} where l and r represents the left and right direction of
movement of the BFFA.

• I = Σ.
• S is the fuzzy start variable corresponds to the fuzzy start state (s, r)
with S(S) = S(s, r)

• The fuzzy production rules P of G is obtained from the fuzzy transitions
R of M as follows:

� □(q, l)
ρ−→ (p, l)a is in P for every (q, l)a

ρ−→ (p, l) in R and (p, r)□
ρ−→

a(q, r) is in P for every (p, r)a
ρ−→ (q, r) in R.

� (q, l)
ρ−→ a or (q, r)

ρ−→ a if (q, l) or (q, r) ∈ F with S(q, l) = S(q, r) =
ρ

�
(p, r)
□

ρ−→ a
(q′, l)

is in P when (p, r)a
ρ′

−→ (q, r) and

(q, r)□
ρ′′

−→ (q′, l) is in R, where ρ = min{ρ′, ρ′′}.

Also,
(p, l)
□

ρ−→ a
(q′, r)

is in P when (p, l)a
ρ′

−→ (q, l) and (q, l)□
ρ′′

−→

(q′, r) is in R, where ρ = min{ρ′, ρ′′}

It is easy to observe that, for every m × n matrix W generated by an U −
IFRAG there exits a BFFA that accepts W .

Therefore, for every L(G) generated by the U−IFRAG G there exists a BFFA
M that accepts the L(G).

The converse part can be similarly proved.
Hence, L(BFFA) = Lrec(U − IFRAG). □

Corollary 3.12. T (L(BFFA)) = Lrec(L− IFRAG).

The proof of the corollary is easily verifiable from Theorem 3.11 and Corollary
3.10.
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4. Two dimensional fuzzy regular langauges - Boustrophedon Fuzzy
Finite Automata relation

In this section, we have discussed the relation between two dimensional fuzzy
right - linear grammar with returning fuzzy finite automata and boustrophedon
fuzzy finite automata.

Theorem 4.1. For every 2-FRLG G there exists a RFFA M such that the
transpose of the language generated by the 2-FRLG is equal to the language
accepted by the RFFA.

Proof. Let G = (Gh, Gv) be a 2-FRLG, where Gh = (Vh, Ih, Rh, S) and Gv =
n⋃

i=1

Gvi = (Vvi , Iv, Pvi , Si). We can construct an RFFA M = (Q,Σ,R, s, F,#,□)

such that Q = (Vh × {f}) × (Vv × {f}) ∪ {s}, where f /∈ Vh ∪ Vv and s is the
fuzzy start state of RFFA corresponding to the start variable S ∈ Gh with
S(s) = S(S), Σ = Iv, F = {(f, f)} with S(f, f) = 1 and the fuzzy transition
rules R are defined as follows:

• sa
ρ−→ (S′, A′) is in R when S

ρ′

−→ AS′ ∈ Rh and A
ρ′′

−→ aA′ ∈ Rv in
which ρ = min{ρ′, ρ′′, ρ′′′} where R(S) = ρ′′′.

• s
ρ−→ (f,A′) is in R when S

ρ′

−→ A ∈ Rh and A
ρ′′

−→ aA′ ∈ Rv in which
ρ = min{ρ′, ρ′′, ρ′′′} where R(S) = ρ′′′.

• (Y,A)a
ρ−→ (Y,A′) is in R when Y ∈ Vh ∪ {f} and A

ρ′

−→ aA′ ∈ Rv in
which ρ = min{ρ′, ρ′′; ρ′′ = R(S)} otherwise ρ = ρ′.

• (Y,A)a
ρ−→ (Y, f) is in R when A

ρ′

−→ a ∈ Rv and Y ∈ Vh in which
ρ = min{ρ′, ρ′′; ρ′′ = (S)} otherwise ρ = ρ′.

• (Y, f)#
ρ−→ (Y ′, A) is in R when Y

ρ−→ AY ′ ∈ Rh.

• (Y, f)#
ρ−→ (f,A) is in R when Y → ρA ∈ Rh.

• (f,A)a
ρ−→ (f, f) is in R when A

ρ−→ a ∈ Rv.

where ρ, ρ′ and ρ′′′ ∈ [0, 1].
It is easy to observe that for every m×n matrix W in the language generated

by 2-FRLG then there exists a RFFA R, that accepts the transpose of the matrix
W .

Hence, for every 2-FRLG there exists a RFFA and that accepts the transpose
of 2-FRL generated by 2-FRLG. □

Theorem 4.2. For every RFFA M there exists a 2-FRLG G such that the
2−FRL accepted by the RFFA is equal to the transpose of the language generated
by 2-FRLG.

Proof. Let M = (Q,Σ,R, s, F,#,□) be an RFFA. We can construct a 2-FRLG

G = (Gh, Gv) where Gh = (Vh, Ih, Rh, S) and Gv =
n⋃

i=1

Gvi = (Vvi , Iv, Pvi , Si)

such that
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• Vh = Q∪ {S}, Vv = Ih, Iv = Σ and S is the start symbol with member-
ship value of start state of RFFA M

• Rh is defined as follows:

� S
ρ−→ (S, p)p ∈ Rh for each p ∈ Q, where ρ = S(S).

� p1
ρ−→ (p1, p2)p2 ∈ Rh for all p1, p2 ∈ Q where ρ = S(S) if p1, p2 = S

otherwise ρ = 1

� p1
ρ−→ (p1, f) ∈ Rh for each f ∈ F, p1 ∈ Q where ρ = S(f)∀f ∈ F

• Rv is defined as follows:

� (p1, p3)
ρ−→ a(p2, p3) ∈ Rv for each p1a

ρ′

−→ p2 ∈ R and p3 ∈ Q, in
which ρ = min{ρ′, ρ′′} where ρ′′ = S(S) otherwise ρ = ρ′

� (p1, p3)
ρ−→ a ∈ Rv for each p1a

ρ−→ p2 ∈ R and p2#
1−→ p3 ∈ R

� (p1, f)
ρ−→ a ∈ Rv for each p1a

ρ′

−→ f ∈ R and f ∈ F , in which
ρ = min{ρ′, ρ′′} where ρ′′ = d(f)

It is easy to observe that for every m×n matrix W in the language accepted
by the RFFA M there exists a 2-FRLG G that generates the transpose of matrix
W .

Hence, for every RFFA there exists a 2-FRLG such that the fuzzy language
accepted by the RFFA is equal to the transpose of the language generated by
2-FRLG. □

Corollary 4.3. L(RFFA)=T(L(2-FRLG)).

Proof of Corollary 4.3 can be easily obtained from the Theorems 4.1 and 4.2.

Example 4.4. Consider the 2-FRLG G = (Gh, Gv) generates 2-FRL L(G)
describing token L of size m × n with degree 0.2, when m > 1, n = 2 and
0.1, when m > 1, n > 1 as given in Example 3.1 in Section 3 of [8]. Here,

Gh = ({S,A}, {S 0.2−−→ S1A,A
0.1−−→ S2A,A

0.3−−→ S2}, {1/S})
Gv = Gv1 ∪Gv2

Gv1 = ({S1}, {Z, ∗}, {S1
0.3−−→ ZS1, S1

0.6−−→ Z}, {1/S1})
Gv2 = ({S2, B}, {Z, ∗}, {S2

0.2−−→ ∗B,B
0.2−−→ ∗B,B

0.3−−→ Z}, {1/S2})
By Corollary 3.1, we can construct a RFFA M = (Q,Σ,R, s, F,#,□), where

Q = {s, (A,S1), (A,S2),(A,B), (S, S1), (S,B), (S, S2),

(f, S1), (S, f), (A, f), (f, S2), (f,B), (f, f)}
Σ = Iv, s is the start state corresponds to the start variable S with S(s) = S(S),
F = {1/(f, f)}, # represents the blank symbol and the transition rules R of
RFFA is defined as follows:

• For S
0.2−−→ S1A ∈ Rh and S1

0.3−−→ ZS1 ∈ Rv, we have sZ
0.2−−→ ZS1 ∈ R.

• For each Vh ∪ {f} and S1
0.3−−→ ZS1, S2

0.2−−→ ∗B, B
0.2−−→ ∗B, we have the

following transition rules in R.
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� (S, S1)Z
0.3−−→ (S, S1)

(S, S2)∗
0.2−−→ (S,B)

(S,B)∗ 0.2−−→ (S,B)

� (A,S1)Z
0.3−−→ (A,S1)

(A,S2)∗
0.2−−→ (A,B)

(A,B)∗ 0.2−−→ (A,B)

� (f, S1)Z
0.3−−→ (f, S1)

(f, S2)∗
0.2−−→ (f,B)

(f,B)∗ 0.2−−→ (f,B)

• For each Vh = {S,A} and S1
0.6−−→ Z, S1

0.6−−→ Z, B
0.3−−→ Z in Rv, we have

the following transition rules in R.

� (S, S1)Z
0.6−−→ (S, f)

(A,S1)Z
0.6−−→ (A, f1)

� (S,B)Z
0.3−−→ (S, f)

(A,B)Z
0.3−−→ (A, f)

• For S
0.2−−→ S1A and A

0.1−−→ S2A in Rh, we have (S, f)#
0.2−−→ (A,S1) and

(A, f)#
0.1−−→ (A,S2) in R.

• For A
0.3−−→ S2 in Rh, we have (A, f)#

0.3−−→ (f, S2) in R.

• For S1
0.6−−→ Z and B

0.3−−→ Z in Rv, we have (f,B)Z
0.3−−→ (f, f) in R.

Corollary 4.5. L(BFFA)=T(L(FRLG)).

Proof is obvious from Theorem 1 in Section 3 of [9] and Corollary 4.3.

Remark 4.1. Here we consider that 2-FRLGG has only one fuzzy start variable.

Remark 4.2. The RFFA and BFFA constructed from 2-FRLG can read the #
symbol with membership value ρ ∈ (0, 1].

By Theorem 4.1, Theorem 4.2, Corollary 3.10, Corollary 4.3 and Corollary
4.5, we obtain the following results.

Corollary 4.6. T (L(BFFA)) = Lrec(L− IFRAG).

Corollary 4.7.
• Lrec(R− IFRAG) = Lrec(L− IRAG) = L(2− FRLG).
• Lrec(D − IFRAG) = Lrec(U − IFRAG) = L(BFFA)

Lemma 4.8. The two dimensional fuzzy language L− of m × n matrices with
any one row completely filled by one and zeros on all other entries cannot be
generated by any 2-FRLG.

Proof. Consider that there exists an 2-FRLGG that generates L|. Since T (L−) =
L| and by Corollary 4.2, there exists a BFFA that accepts T (L|), which is a con-
tradiction to our result that L| cannot be accepted by any BFFA as stated in
pumping lemma of Section 4 of [9].

Therefore, the two dimensional fuzzy language L− cannot be generated by
any 2-FRLG. □
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Lemma 4.9. The two dimensional fuzzy language L of n × n matrices with
ones on the main diagonal and zeros on all other entries cannot be generated by
any 2-FRLG.

Proof. Let us assume that there exists an 2-FRLG G that generates L\. Since
T (L\) = L\ and by Corollary 4.5, there exists a BFFA that accepts T (L\),
which is a contradiction to our result that L\ cannot be accepted by any BFFA
as stated in Section 4 of [9].

Therefore, the two dimensional fuzzy language L\ cannot be generated by
any 2-FRLG. □

5. Hierarchy Results

In this section, the hierarchy results of the two dimensional fuzzy languages
generated by IFRAG, 2-FRLG and the two dimensional fuzzy languages accepted
by BFFA has been discussed and illustrated.

Theorem 5.1. L(BFFA) ∪ L(2− FRLG) ⊂ Lrec(IFRAG).

Proof. It is easy to observe that the proof of L(BFFA) ∪ L(2 − FRLG) ⊆
Lrec(IFRAG) is trivial, since by Corollary 3.10 and Theorem 3.11. The proof
of L(BFFA) ∪ L(2 − FRLG) ̸= Lrec(IFRAG) can be obtained from Example
3.6 and interchanging lemma stated in [9]. □

The proper inclusion and incomparabilities illustrated in Figure 1 can be easily
seen from Theorem 5.1, Corollary 3.10, Example 3.6, Lemma 4.8 and Lemma
4.9. Since, L(2− FRLG) and L(BFFA) are incomparable the proper inclusion
L(2− FRLG) ∩ L(BFFA) is shown in Figure 1 can be easily verifiable.

Note 2. L(BFFA) ∩ L(2 − FRLG) ̸= ∅, since the two dimensional fuzzy lan-
guages describing token ′L′ is in L(BFFA) and L(2−FRLG) (see Example 3.1
in [8] and Example 1 in [9]).

Lrec(IFRAG) L(BFFA) ∪ L(2− FRLG)

L(BFFA) = Lrec(U − IFRAG)

L(2− FRLG) = Lrec(L− IFRAG)

L(BFFA) ∩ L(2− FRLG)

Figure 1. Relation among the two dimensional fuzzy
languages
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6. Conclusion

In this paper, one of the simplest model to generate two dimensional fuzzy
regular languages called isometric fuzzy regular array grammars has been in-
troduced. Also, exemplified the generation of isometric fuzzy regular array lan-
guages. Proved the closure properties of isometric fuzzy regular array languages.
The relation between isometric fuzzy regular array grammars with boustrophe-
don fuzzy finite automata has been shown. Further, discussed the relations
between two dimensional fuzzy regular grammars with returning fuzzy finite au-
tomata and boustrophedon fuzzy finite automata. An example is also provided.
Also, studied the hierarchy results of two dimensional fuzzy regular languages,
isometric fuzzy regular array languages and the languages accepted by bous-
trophedon fuzzy finite autoamata. The future work of this study is to extend
the proposed isometric fuzzy regular array languages in line with isometric fuzzy
context-free array languages and to study their application in generating various
kolam and tiling patterns.
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