DOI QR코드

DOI QR Code

Visualization of Vector Fields from Density Data Using Moving Least Squares Based on Monte Carlo Method

몬테카를로 방법 기반의 이동최소제곱을 이용한 밀도 데이터의 벡터장 시각화

  • Jong-Hyun Kim (Inha University)
  • 김종현 (인하대학교)
  • Received : 2024.02.23
  • Accepted : 2024.04.09
  • Published : 2024.06.01

Abstract

In this paper, we propose a new method to visualize different vector field patterns from density data. We use moving least squares (MLS), which is used in physics-based simulations and geometric processing. However, typical MLS does not take into account the nature of density, as it is interpolated to a higher order through vector-based constraints. In this paper, we design an algorithm that incorporates Monte Carlo-based weights into the MLS to efficiently account for the density characteristics implicit in the input data, allowing the algorithm to represent different forms of white noise. As a result, we experimentally demonstrate detailed vector fields that are difficult to represent using existing techniques such as naive MLS and divergence-constrained MLS.

본 논문에서는 밀도 데이터로부터 다양한 벡터장 패턴을 시각화하는 새로운 방법을 제안한다. 이를 위해 물리 기반 시뮬레이션과 기하학적 처리에서 사용되는 이동최소제곱(Moving least squares, MLS)을 이용한다. 하지만 일반적인 MLS는 벡터기반의 제약조건을 통해 고차 보간되기 때문에 밀도의 특성을 고려하지 못한다. 본 논문에서는 입력 데이터에 내포되어 있는 밀도의 특성을 효율적으로 고려하기 위해 몬테카를로 기반의 가중치를 MLS에 통합하여 다양한 형태의 백터장을 표현할 수 있도록 알고리즘을 설계한다. 결과적으로 일반적인 MLS와 발산제약 기반의 MLS 같은 기존 기법으로는 표현하기 힘든 디테일한 벡터장을 실험을 통해 보여준다.

Keywords

References

  1. C. Felter, J. H. Walther, and C. Henriksen, "Moving least squares simulation of free surface flows," Computers & Fluids, vol. 91, pp. 47-56, 2014.
  2. L. White, R. Panchadhara, and D. Trenev, "Flow simulation in heterogeneous porous media with the moving least-squares method," SIAM Journal on Scientific Computing, vol. 39, no. 2, pp. B323-B351, 2017.
  3. Y. Zhu and S. J. Gortler, "3d deformation using moving least squares," 2007.
  4. S. Fleishman, D. Cohen-Or, and C. T. Silva, "Robust moving least-squares fitting with sharp features," ACM transactions on graphics (TOG), vol. 24, no. 3, pp. 544-552, 2005.
  5. C. Kang, T. Lu, M. Zong, F. Wang, and Y. Cheng, "Point cloud smooth sampling and surface reconstruction based on moving least squares," The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. 42, pp. 145-151, 2020.
  6. J.-M. Hong, J.-C. Yoon, and C.-H. Kim, "Divergence-constrained moving least squares for fluid simulation," Computer Animation and Virtual Worlds, vol. 19, no. 3-4, pp. 469-477, 2008.
  7. S.-T. Kim and J.-M. Hong, "Visual simulation of turbulent fluids using mls interpolation profiles," The Visual Computer, vol. 29, pp. 1293-1302, 2013.
  8. A. Cuno, C. Esperanc,a, A. Oliveira, and P. R. Cavalcanti, "3d as-rigid-as-possible deformations using mls," in Proceedings of the 27th computer graphics international conference. Citeseer, 2007, pp. 115-122.
  9. T. Sato, T. Igarashi, C. Batty, and R. Ando, "A long-term semi-lagrangian method for accurate velocity advection," in SIGGRAPH Asia 2017 Technical Briefs, 2017, pp. 1-4.
  10. J. Stam, "Stable fluids," in Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, ser. SIGGRAPH, no. 8, 1999, pp. 121-128.
  11. B. Kim, Y. Liu, I. Llamas, and J. Rossignac, "Advections with significantly reduced dissipation and diffusion," IEEE transactions on visualization and computer graphics, vol. 13, no. 1, pp. 135-144, 2006.
  12. O.-Y. Song, H. Shin, and H.-S. Ko, "Stable but nondissipative water," ACM Transactions on Graphics (TOG), vol. 24, no. 1, pp. 81-97, 2005.
  13. D. Kim, O.-y. Song, and H.-S. Ko, "A semi-lagrangian cip fluid solver without dimensional splitting," in Computer Graphics Forum, vol. 27, no. 2. Wiley Online Library, 2008, pp. 467-475.
  14. S. Sato, Y. Dobashi, and T. Kim, "Stream-guided smoke simulations," ACM Transactions on Graphics (TOG), vol. 40, no. 4, pp. 1-7, 2021.
  15. Z. Forootaninia and R. Narain, "Frequency-domain smoke guiding," ACM Transactions on Graphics (TOG), vol. 39, no. 6, pp. 1-10, 2020.
  16. S. He, H.-C. Wong, and U.-H. Wong, "An efficient adaptive vortex particle method for real-time smoke simulation," in 2011 12th International Conference on Computer-Aided Design and Computer Graphics. IEEE, 2011, pp. 317-324.
  17. C. Fu, Q. Guo, T. Gast, C. Jiang, and J. Teran, "A polynomial particle-in-cell method," ACM Transactions on Graphics (TOG), vol. 36, no. 6, pp. 1-12, 2017.
  18. B. E. Feldman, J. F. O'brien, and B. M. Klingner, "Animating gases with hybrid meshes," ACM Transactions on Graphics (TOG), vol. 24, no. 3, pp. 904-909, 2005.
  19. N. Foster and D. Metaxas, "Realistic animation of liquids," Graphical models and image processing, vol. 58, no. 5, pp. 471-483, 1996.
  20. N. Foster and D. Metaxas, "Modeling the motion of a hot, turbulent gas," in Proceedings of the 24th annual conference on Computer graphics and interactive techniques, 1997, pp. 181-188.
  21. R. Fedkiw, J. Stam, and H. W. Jensen, "Visual simulation of smoke," in Proceedings of the 28th annual conference on Computer graphics and interactive techniques, 2001, pp. 15-22.
  22. A. Selle, N. Rasmussen, and R. Fedkiw, "A vortex particle method for smoke, water and explosions," in ACM SIGGRAPH 2005 Papers, 2005, pp. 910-914.
  23. J. Kim, D. Cha, B. Chang, B. Koo, and I. Ihm, "Practical animation of turbulent splashing water," in Symposium on Computer Animation, 2006, pp. 335-344.
  24. F. Losasso, J. Talton, N. Kwatra, and R. Fedkiw, "Two-way coupled sph and particle level set fluid simulation," IEEE Transactions on Visualization and Computer Graphics, vol. 14, no. 4, pp. 797-804, 2008.
  25. S. T. Greenwood and D. H. House, "Better with bubbles: enhancing the visual realism of simulated fluid," in Proceedings of the 2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, 2004, pp. 287-296.
  26. J.-M. Hong, H.-Y. Lee, J.-C. Yoon, and C.-H. Kim, "Bubbles alive," ACM Transactions on Graphics (TOG), vol. 27, no. 3, pp. 1-4, 2008.
  27. N. Thurey, F. Sadlo, S. Schirm, M. Muller-Fischer, and M. Gross, "Real-time simulations of bubbles and foam within a shallow water framework," in Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation, 2007, pp. 191-198.
  28. Y. Gao, C.-F. Li, S.-M. Hu, and B. A. Barsky, "Simulating gaseous fluids with low and high speeds," in Computer Graphics Forum, vol. 28, no. 7. Wiley Online Library, 2009, pp. 1845-1852.
  29. J.-M. Hong and C.-H. Kim, "Discontinuous fluids," ACM Transactions on Graphics (TOG), vol. 24, no. 3, pp. 915-920, 2005.
  30. J.-M. Hong, T. Shinar, and R. Fedkiw, "Wrinkled flames and cellular patterns," ACM Transactions on Graphics (TOG), vol. 26, no. 3, pp. 47-es, 2007.
  31. D. Q. Nguyen, R. Fedkiw, and H. W. Jensen, "Physically based modeling and animation of fire," in Proceedings of the 29th annual conference on Computer graphics and interactive techniques, 2002, pp. 721-728.
  32. D. Kim, O.-y. Song, and H.-S. Ko, "Stretching and wiggling liquids," in ACM SIGGRAPH Asia 2009 papers, 2009, pp. 1-7.
  33. T. Kim, N. Thurey, D. James, and M. Gross, "Wavelet turbulence for fluid simulation," ACM Transactions on Graphics (TOG), vol. 27, no. 3, pp. 1-6, 2008.
  34. R. Narain, J. Sewall, M. Carlson, and M. C. Lin, "Fast animation of turbulence using energy transport and procedural synthesis," ACM Transactions on Graphics (TOG), vol. 27, no. 5, pp. 1-8, 2008.
  35. H. Schechter and R. Bridson, "Evolving sub-grid turbulence for smoke animation," in Proceedings of the 2008 ACM SIG-GRAPH/Eurographics symposium on Computer animation, 2008, pp. 1-7.
  36. M. Chu and N. Thuerey, "Data-driven synthesis of smoke flows with cnn-based feature descriptors," ACM Transactions on Graphics (TOG), vol. 36, no. 4, pp. 1-14, 2017.
  37. S. Sato, Y. Dobashi, T. Kim, and T. Nishita, "Example-based turbulence style transfer," ACM Transactions on Graphics (TOG), vol. 37, no. 4, pp. 1-9, 2018.
  38. X.-S. Chen, C.-F. Li, G.-C. Cao, Y.-T. Jiang, and S.-M. Hu, "A moving least square reproducing kernel particle method for unified multiphase continuum simulation," ACM Transactions on Graphics (TOG), vol. 39, no. 6, pp. 1-15, 2020.
  39. R. Sawhney and K. Crane, "Monte carlo geometry processing: A grid-free approach to pde-based methods on volumetric domains," ACM Transactions on Graphics, vol. 39, no. 4, 2020.
  40. Y. Xu, T. Fan, Y. Yuan, and G. Singh, "Ladybird: Quasimonte carlo sampling for deep implicit field based 3d reconstruction with symmetry," in European Conference on Computer Vision. Springer, 2020, pp. 248-263.
  41. A. Huerta, Y. Vidal, and P. Villon, "Pseudo-divergence-free element free galerkin method for incompressible fluid flow," Computer methods in applied mechanics and engineering, vol. 193, no. 12-14, pp. 1119-1136, 2004.