DOI QR코드

DOI QR Code

Seismic responses of structure isolated by FPB subject to pounding between the sliding interfaces considering soil-structure interaction

  • Yingna Li (School of Transportation and Civil Engineering, Nantong University) ;
  • Jingcai Zhang (School of Transportation and Civil Engineering, Nantong University)
  • Received : 2023.11.30
  • Accepted : 2024.04.11
  • Published : 2024.06.25

Abstract

The study aims to investigate the pounding that occurs between the isolator's ring and slider of isolated structures resulting from excessive seismic excitation, while considering soil-structure interaction. The dynamic responses and poundings of structures subjected a series seismic records were comparatively analyzed for three different soil types and fixed-base structures. A series of parametric studies were conducted to thoroughly discuss the effects of the impact displacement ratio, the FPB friction coefficient ratio, and the radius ratio on the structural dynamic response when considering impact and SSI. It was found that the pounding is extremely brief, with an exceptionally large pounding force generated by impact, resulting in significant acceleration pulse. The acceleration and inter-story shear force of the structure experiencing pounding were greater than those without considering pounding. Sudden changes in the inter-story shear force between the first and second floors of the structure were also observed. The dynamic response of structures in soft ground was significantly lower than that of structures in other ground conditions under the same conditions, regardless of the earthquake wave exciting the structure. When the structure is influenced by pulse-type earthquake records, its dynamic response exhibits a trend of first intensifying and then weakening as the equivalent radius ratio and friction coefficient ratio increase. However, it increases with an increase in the pounding displacement ratio, equivalent radius ratio, friction coefficient ratio, and displacement ratio when the structures are subjected to non-pulse-type seismic record.

Keywords

Acknowledgement

This research is financially supported by the Natural Science Foundation of Nantong (Grant No. JC2023025), the National Natural Science Foundation of China (Grant No. 52361135807), and the Talent introduction start-up fund of Nantong University (Grant No. 135443633082).

References

  1. Ali, A., Zhang, C., Bibi, T., Zhu, L., Cao, L., Li, C. and Hsiao, P.C. (2022), "Investigation of five different low-cost locally available isolation layer materials used in sliding base isolation systems", Soil Dyn. Earthq. Eng., 154, 107127. https://doi.org/10.1016/j.soildyn.2021.107127.
  2. Amiri, G., Shakouri, A., Veismoradi, S. and Namiranian, P. (2017), "Effect of seismic pounding on buildings isolated by triple friction pendulum bearing", Earthq. Struct., 12(1), 35-45. https://doi.org/10.12989/eas.2017.12.1.035.
  3. Auad, G. and Almazan, J.L. (2021), "Lateral impact resilient double concave friction pendulum (LIR-DCFP) bearing: Formulation, parametric study of the slider and threedimensional numerical example", Eng. Struct., 233, 111892. https://doi.org/10.1016/j.engstruct.2021.111892.
  4. Auad, G. and Almazan, J.L. (2022), "Evaluating the use of variable curvature frictional isolators to mitigate the adverse effects of internal lateral impacts", Eng. Struct., 266, 114619. https://doi.org/10.1016/j.engstruct.2022.114619.
  5. Auad, G., Castaldo, P. and Almazan, J.L. (2022), "Seismic reliability of structures equipped with LIR-DCFP bearings in terms of superstructure ductility and isolator displacement", Earthq. Eng. Struct. Dyn., 51(13), 3171-3214. https://doi.org/10.1002/eqe.3719.
  6. Bao, Y., Becker, T.C. and Hamaguchi, H. (2016), "Failure of double friction pendulum bearings under pulse-type motions", Earthq. Eng. Struct. Dyn., 46(5), 715-732. https://doi.org/10.1002/eqe.2827.
  7. Becker, T. and Bao, Y. (2018), "Inelastic response of base-isolated structures subject to impact", Eng. Struct., 171(9), 86-93. https://doi.org/10.1016/j.engstruct.2018.05.091.
  8. Becker, T., Bao, Y. and Mahin, S. (2017), "Extreme behavior in a triple friction pendulum isolated frame", Earthq. Eng. Struct. Dyn., 46(15), 2683-2698. https://doi.org/10.1002/eqe.2924.
  9. Castaldo, P. and Alfano, G. (2020), "Seismic reliability-based design of hardening and softening structures isolated by double concave sliding devices", Soil Dyn. Earthq. Eng., 129, 105930. https://doi.org/10.1016/j.soildyn.2019.105930.
  10. Castaldo, P. and Ferrentino, T. (2020), "Seismic reliability-based design approach for base-isolated systems in different sites", Sustainab., 12(6), 2400. https://doi.org/10.3390/su12062400.
  11. Castaldo, P. and Tubaldi, E. (2015), "Influence of FPS bearing properties on the seismic performance of base-isolated structures", Earthq. Eng. Struct. Dyn., 44(15), 2817-2836. https://doi.org/10.1002/eqe.2610.
  12. Castaldo, P. and Tubaldi, E. (2018), "Influence of ground motion characteristics on the optimal single concave sliding bearing properties for base-isolated structures", Soil Dyn. Earthq. Eng., 104, 346-364. https://doi.org/10.1016/j.soildyn.2017.09.025.
  13. Castaldo, P., Palazzo, B. and Ferrentino, T. (2017), "Seismic reliability-based ductility demand evaluation for inelastic baseisolated structures with friction pendulum devices", Earthq. Eng. Struct. Dyn., 46(8), 1245-1266. https://doi.org/10.1002/eqe.2854.
  14. Chen, X. and Xiong, J. (2022), "Seismic resilient design with base isolation device using friction pendulum bearing and viscous damper", Soil Dyn. Earthq. Eng., 153, 107073. https://doi.org/10.1016/j.soildyn.2021.107073.
  15. Cheng, X., Jing, W., Chen, J. and Zhang, X. (2017), "Pounding dynamic responses of sliding base-isolated rectangular liquidstorage structure considering soil-structure interactions", Shock Vib., 2017, 8594051. https://doi.org/10.1155/2017/8594051.
  16. Du, H., Wang, Y., Han, M. and Ibarra, L. (2021), "Experimental seismic performance of a base-isolated building with displacement limiters", Eng. Struct., 10(1), 1-18. https://doi.org/10.1016/j.engstruct.2021.112811.
  17. Elwardany, H., Seleemah, A., Jankowski, R. and El-khoriby, S. (2019), "Influence of soil-structure interaction on seismic pounding between steel frame buildings considering the effect of infill panels", Bull. Earthq. Eng., 17(11), 6165-6202. https://doi.org/10.1007/s10518-019-00713-1.
  18. Godinez-Dominguez, E.A., Tena-Colunga, A., Perez-Rocha, L., Archundia-Aranda, H., Gomez-Bernal, A., Ruiz-Torres, R. and Escamilla-Cruz, J. (2021), "The September 7, 2017 Tehuantepec, Mexico, earthquake: Damage assessment in masonry structures for housing", Int. J. Disaster Risk Reduct., 56, 102123. https://doi.org/10.1016/j.ijdrr.2021.102123.
  19. Hughes, P. and Mosqueda, G. (2020), "Evaluation of uniaxial contact models for moat wall pounding simulations", Earthq. Eng. Struct. Dyn., 49(12), 1197-1215. https://doi.org/10.1002/eqe.3285.
  20. Jankowski, R. (2005), "Nonlinear viscoelastic modelling of earthquake-induced structural pounding", Earthq. Eng. Struct. Dyn., 34(6), 595-611. https://doi.org/10.1002/eqe.434.
  21. Jing, W., Wang, Q., Xing, S., Cheng, X. and Song, Y. (2023), "Control measures of collapse-pounding dynamic responses of adjacent structures under earthquake action", Soil Dyn. Earthq. Eng., 165, 107715. https://doi.org/10.1016/j.soildyn.2022.107715.
  22. Karabork, T., Deneme, I.O. and Bilgehan, R.P. (2014), "A comparison of the effect of SSI on base isolation systems and fixed-base structures for soft soil", Geomech. Eng., 7(1), 87-103. https://doi.org/10.12989/gae.2014.7.1.087.
  23. Krishnamoorthy, A. and Anita, S. (2016), "Soil-structure interaction analysis of a FPS-isolated structure using finite element model", Struct., 5, 44-57. https://doi.org/10.1016/j.istruc.2015.08.003.
  24. Liu, M.Y., Chiang, W.L., Hwang, J.H. and Chu, C.R. (2008), "Wind-induced vibration of high-rise building with tuned mass damper including soil-structure interaction", J. Wind Eng. Indust. Aerodyn., 96(6-7), 1092-1102. https://doi.org/10.1016/j.jweia.2007.06.034.
  25. Masroor, A. and Mosqueda, G. (2012), "Experimental simulation of base-isolated buildings pounding against moat wall and effects on superstructure response", Earthq. Eng. Struct. Dyn., 41(14), 2093-2109. https://doi.org/10.1002/eqe.2177.
  26. Perez-Rocha, L.E., Aviles-Lopez, J. and Tena-Colunga, A. (2021), "Base isolation for mid-rise buildings in presence of soilstructure interaction", Soil Dyn. Earthq. Eng., 151, 106980. https://doi.org/10.1016/j.soildyn.2021.106980.
  27. Shang, J., Tan, P., Zhang, Y., Han, J. and Qin, J. (2021), "Experimental and analytical investigation of variable friction pendulum isolator", Eng. Struct., 243, 112575. https://doi.org/10.1016/j.engstruct.2021.112575.
  28. Shang, J., Tan, P., Zhang, Y., Han, J., Qin, J. and Mi, P. (2021), "Seismic isolation design of structure using variable friction pendulum bearings", Earthq. Eng. Struct. Dyn., 148(2), 106855. https://doi.org/10.1016/j.soildyn.2021.106855.
  29. Sobhi, P. and Far, H. (2022), "Impact of structural pounding on structural behaviour of adjacent buildings considering dynamic soil-structure interaction", Bull. Earthq. Eng., 20(7), 3515-3547. https://doi.org/10.1007/s10518-021-01195-w.
  30. Takewaki, I. (2005), "Bound of earthquake input energy to soilstructure interaction systems", Soil Dyn. Earthq. Eng., 25(7), 741-752. https://doi.org/10.1016/j.soildyn.2004.11.017.
  31. Tena-Colunga, A. (2021), "Conditions of structural irregularity. Relationships with observed earthquake damage in Mexico City in 2017", Soil Dyn. Earthq. Eng., 143, 106630. https://doi.org/10.1016/j.soildyn.2021.106630.
  32. Tena-Colunga, A. and Nangullasmu-Hernandez, H.D. (2023), "Resilient seismic design of reinforced concrete framed buildings with metallic fuses including soil-structure interaction effects", Soil Dyn. Earthq. Eng., 163, 109589. https://doi.org/10.1016/j.soildyn.2022.107589.
  33. Tena-Colunga, A. and Sanchez-Ballinas, D. (2022), "Required building separations and observed seismic pounding on the soft soils of Mexico City", Soil Dyn. Earthq. Eng., 161, 107413. https://doi.org/10.1016/j.soildyn.2022.107413.
  34. Tena-Colunga, A. and Sanchez-Ballinas, D. (2022), "The collapse of Alvaro Obregon 286 building in Mexico City during the September 19, 2017 Earthquake. A case study", J. Build. Eng., 49, 104060. https://doi.org/10.1016/j.jobe.2022.104060.
  35. Tena-Colunga, A., Perez-Rocha, L.E., Aviles-Lopez, J. and Cordero-Macias, C. (2015), "Seismic isolation of buildings for power stations considering soil-structure interaction effects", J. Build. Eng., 4, 21-40. https://doi.org/10.1016/j.jobe.2015.08.001.
  36. Xiang, Y., Tan, P., He, H., Shang, J.Y. and Zhang, Y.F. (2022), "Seismic optimization of variable friction pendulum tuned mass damper with hysteretic damping characteristic", Earthq. Eng. Struct. Dyn., 160, 107381. https://doi.org/10.1016/j.soildyn.2022.107381.
  37. Xue, Q., Zhang, C., He, J., Zou, G. and Zhang, J. (2016), "An updated analytical structural pounding force model based on viscoelasticity of materials", Shock Vib., 2016, 1-15. https://doi.org/10.1155/2016/2596923.
  38. Yu, C., Whittaker, A., Kosbab, B. and Tehrani, P.K. (2023), "Earthquake-induced impact of base-isolated buildings: Theory, numerical modeling, and design solutions", Earthq. Eng. Struct. Dyn., 52(5), 1445-1462. https://doi.org/10.1002/eqe.3824.
  39. Zayas, V., Eeri, M., Low, S. and Mhin, S. (1990), "A simple pendulum technique for achieving seismic isolation", Earthq. Spectra, 6(2), 317-333. https://doi.org/10.1193/1.1585573.
  40. Zhang, C. and Ali, A. (2021), "The advancement of seismic isolation and energy dissipation mechanisms based on friction", Soil Dyn. Earthq. Eng., 146, 106746. https://doi.org/10.1016/j.soildyn.2021.106746.
  41. Zhang, C., Ali, A. and Sun, L. (2021), "Investigation on low-cost friction-based isolation systems for masonry building structures: Experimental and numerical studies", Eng. Struct., 243, 112645. https://doi.org/10.1016/j.engstruct.2021.112645.
  42. Zhang, C., Gholipour, G. and Mousavi, A. (2020), "Blast loads induced responses of RC structural members: State-of-the-art review", Compos. Part B: Eng., 195, 108066. https://doi.org/10.1016/j.compositesb.2020.108066.
  43. Zhang, C., Gholipour, G. and Mousavi, A. (2021), "State-of-the-art review on responses of RC structures subjected to lateral impact loads", Arch. Comput. Method. Eng., 28(4), 2477-2507. https://doi.org/10.1007/s11831-020-09467-5.
  44. Zhang, J., Ding, Y. and Guan, X. (2022), "Overturning resistance of friction pendulum bearing-isolated structure subjected to impact", Int. J. Struct. Stab. Dyn., 22(6), 2250072. https://doi.org/10.1142/S0219455422500729.
  45. Zhang, J.C. and Zhang, C. (2023), "Using viscoelastic materials to mitigate earthquake-induced pounding between adjacent frames with unequal height considering soil-structure interactions", Soil Dyn. Earthq. Eng., 172, 107988. https://doi.org/10.1016/j.soildyn.2023.107988.
  46. Zheng, W., Tan, P., Li, J., Wang, H., Tan, J. and Sun, Z. (2022), "Sliding-LRB incorporating superelastic SMA for seismic protection of bridges under near-fault earthquakes: A comparative study", Soil Dyn. Earthq. Eng., 155, 107161. https://doi.org/10.1016/j.soildyn.2022.107161.
  47. Zhuang, H., Yu, X., Zhu, C. and Jin, D. (2015), "Shaking table tests for the seismic response of a base-isolated structure with the SSI effect", Soil Dyn. Earthq. Eng., 67, 208-218. https://doi.org/10.1016/j.soildyn.2014.09.013.