DOI QR코드

DOI QR Code

Effect of modifying the thickness of the plate at the level of the overlap length in the presence of bonding defects on the strength of an adhesive joint

  • Attout Boualem (Department of Mechanical Engineering, LMPM Laboratory, University of Djillali Liabes) ;
  • Sidi Mohamed Medjdoub (Department of Mechanical Engineering, LMSS Laboratory, University of Djillali Liabes) ;
  • Madani Kouider (Department of Mechanical Engineering, LMSS Laboratory, University of Djillali Liabes) ;
  • Kaddouri Nadia (Department of Mechanical Engineering, LMSS Laboratory, University of Djillali Liabes) ;
  • Elajrami Mohamed (Department of Mechanical Engineering, LMSS Laboratory, University of Djillali Liabes) ;
  • Belhouari Mohamed (Department of Mechanical Engineering, LMSS Laboratory, University of Djillali Liabes) ;
  • Amin Houari (Department of Mechanical Engineering, LMSS Laboratory, UMBB University Boumerdes) ;
  • Salah Amroune (Department of Mechanical Engineering, M'sila University) ;
  • R.D.S.G. Campilho (CIDEM, ISEP-School of Engineering, Polytechnic Institute of Porto)
  • Received : 2024.03.21
  • Accepted : 2024.05.20
  • Published : 2024.03.25

Abstract

Adhesive bonding is currently widely used in many industrial fields, particularly in the aeronautics sector. Despite its advantages over mechanical joints such as riveting and welding, adhesive bonding is mostly used for secondary structures due to its low peel strength; especially if it is simultaneously exposed to temperature and humidity; and often presence of bonding defects. In fact, during joint preparation, several types of defects can be introduced into the adhesive layer such as air bubbles, cavities, or cracks, which induce stress concentrations potentially leading to premature failure. Indeed, the presence of defects in the adhesive joint has a significant effect on adhesive stresses, which emphasizes the need for a good surface treatment. The research in this field is aimed at minimizing the stresses in the adhesive joint at its free edges by geometric modifications of the ovelapping part and/or by changing the nature of the substrates. In this study, the finite element method is used to describe the mechanical behavior of bonded joints. Thus, a three-dimensional model is made to analyze the effect of defects in the adhesive joint at areas of high stress concentrations. The analysis consists of estimating the different stresses in an adhesive joint between two 2024-T3 aluminum plates. Two types of single lap joints(SLJ) were analyzed: a standard SLJ and another modified by removing 0.2 mm of material from the thickness of one plate along the overlap length, taking into account several factors such as the applied load, shape, size and position of the defect. The obtained results clearly show that the presence of a bonding defect significantly affects stresses in the adhesive joint, which become important if the joint is subjected to a higher applied load. On the other hand, the geometric modification made to the plate considerably reduces the various stresses in the adhesive joint even in the presence of a bonding defect.

Keywords

References

  1. Abdel Wahab, M.M. (2000), "On the use of fracture mechanics in designing a single lap adhesive joint", J. Adhes. Sci. Technol., 14(6), 851-865. https://doi.org/10.1163/15685610051066758. 
  2. Abdel Wahab, M.M., Ashcroft, I.A., Crocombe, A.D. and Smith, P.A. (2002), "Numerical prediction of fatigue crack propagation lifetime in adhesively bonded structures", Int. J. Fatig., 24(6), 705-709. https://doi.org/1016/S0142-1123(01)00173-6.  1016/S0142-1123(01)00173-6
  3. Adams, R.D., Comyn, J. and Wake, W.C. (1997), Structural Adhesive Joints in Engineering, Springer Science & Business Media. 
  4. Akpinar, S., Doru, M.O., Ozel, A., Aydin, M.D. and Jahanpasand, H.G. (2013), "The effect of the spew fillet on an adhesively bonded single-lap joint subjected to bending moment", Compos. B Eng., 55, 55-64. https://doi.org/10.1016/j.compositesb.2013.05.056. 
  5. Banea, M.D., Rosioara, M., Carbas, R.J.C. and da Silva, L.F.M. (2018), "Multi-material adhesive joints for automotive industry", Compos. B Eng., 151(15), 71-77. https://doi.org/10.1016/j.compositesb.2018.06.009. 
  6. Belingardi, G., Goglio, L. and Tarditi, A. (2002), "Investigating the effect of spew and chamfer size on the stresses in metal/plastics adhesive joints", Int. J. Adhes. Adhes., 22(4), 273-282. https://doi.org/10.1016/S0143-7496(02)00004-0. 
  7. Benchiha, A. and Madani, K. (2015), "Influence of the presence of defects on the stresses shear distribution in the adhesive layer for the single-lap bonded joint", Struct. Eng. Mech., 53(5), 1017-1030. https://doi.org/10.12989/sem.2015.53.5.1017. 
  8. Bezzerrouki, M., Madani, K., Sahli, A., Touzain, S. and Mallarino, S. (2019), "Innovative geometric design improves the resistance of simple metal/metal lap joint", Frattura ed Integrita Strutturale, 13(48), 491-502. https://doi.org/10.3221/IGF-ESIS.48.47. 
  9. da Silva, L.F.M. and Adams, R.D. (2007), "Techniques to reduce the peel stresses in adhesive joints with composites", Int. J. Adhes. Adhes., 27(3), 227-235. https://doi.org/10.1016/j.ijadhadh.2006.04.001. 
  10. da Silva, L.F.M. and Campilho, R.D.S.G. (2015), "Design of adhesively-bonded composite joints", Fatig. Fract. Adhes. Bond. Compos. Joint., 43-71. https://doi.org/10.1016/B978-0-85709-806-1.00002-1.
  11. da Silva, L.F.M., Rodrigues, T.N.S.S., Figueiredo, M.A.V., de Moura, M.F.S.F. and Chousal, J.A.G. (2006), "Effect of adhesive type and thickness on the lap shear strength", J. Adhes., 82, 1091-1115. https://doi.org/10.1080/00218460600948511. 
  12. Doru, M.O., Ozel, A., Akpinar, S. and Aydin, M.D. (2014), "Effect of the spew fillet on adhesively bonded single-lap joint subjected to tensile loading: experimental and 3-D non-linear stress analysis", J. Adhes., 90(3), 195-209. https://doi.org/10.1080/00218464.2013.777900. 
  13. Elhannani, M., Madani, K., Chama, Z., Legrand, E., Touzain, S. and Feaugas, X. (2017), "Influence of the presence of defects on the adhesive layer for the single-lap bonded joint-Part II: Probabilistic assessment of the critical state", Aeros. Sci. Techno., 63, 372-386. https://doi.org/10.1016/j.ast.2016.12.020. 
  14. Elhannani, M., Madani, K., Legrand, E., Touzain, S. and Feaugas, X. (2017), "Numerical analysis of the effect of the presence, number and shape of bonding defect on the shear stresses distribution in an adhesive layer for the single-lap bonded joint; Part 1", Aeros. Sci. Technol., 62, 122-135. https://doi.org/10.1016/j.ast.2016.11.024. 
  15. Elhannani, M., Madani, K., Mokhtari, M., Touzain, S., Feaugas, X. and Cohendoz, S. (2016), "A new analytical approach for optimization design of adhesively bonded single-lap joint", Struct. Eng. Mech., 59(2), 313-326. https://doi.org/10.12989/sem.2016.59.2.313 
  16. Fitton, M.D. and Broughton, J.G. (2005), "Variable modulus adhesives: an approach to optimised joint performance", Int. J. Adhes. Adhes., 25(4), 329-336. https://doi.org/10.1016/j.ijadhadh.2004.08.002. 
  17. Hara, D. and O zgen, G.O. (2016), "Investigation of weight reduction of automotive body structures with the use of sandwich materials", Transp. Res. Proc., 14, 1013-1020. https://doi.org/10.1016/j.trpro.2016.05.081. 
  18. Kaddouri, N., Madani, K., Bellali, M.A. and Feaugas, X. (2019), "Analysis of the presence of bonding defects on the fracture behavior of a damaged plate repaired by composite patch", Frattura ed Integrita Strutturale, 13(49), 331-340. https://doi.org/10.3221/IGF-ESIS49.33. 
  19. Kim, J.H., Park, B.J. and Han, Y.W. (2004), "Evaluation of fatigue characteristics for adhesively-bonded composite stepped lap joint", Compos. Struct., 66(1-4), 69-75. https://doi.org/10.1016/j.compstruct.2004.04.023. 
  20. Madani, K., Touzain, S., Feaugas, X., Cohendouz, S. and Ratwani. M. (2010), "Experimental and numerical study of repair techniques for panels with geometrical discontinuities", Comput. Mater. Sci., 48(1), 83-93. https://doi.org/10.1016/j.commatsci.2009.12.005. 
  21. Matthews, F.L., Kilty, P.F. and Godwin, E.W. (1982), "A review of the strength of joints in fibre-reinforced plastics. Part 2. Adhesively bonded joints", Compos., 13(1), 29-37. https://doi.org/10.1016/0010-4361(82)90168-9. 
  22. Mokhtari, M., Madani, K., Belhouari, M., Touzain, S., Feaugas, X. and Ratwani, M. (2013), "Effects of composite adherend properties on stresses in double lap bonded joints", Mater. Des., 44, 633-639. https://doi.org/10.1016/j.matdes.2012.08.001. 
  23. Naboulsi, S. and Mall, S. (1996), "Modeling of a cracked metallic structure with bonded composite patch using the three layer technique", Compos. Struct., 35(3), 295-308. https://doi.org/10.1016/0263- 8223(96)00043-8. 
  24. Nemati, G.A., Ayatollahi, M.R., Ghaffari, S.H. and da Silva, L.F.M. (2018), "Effect of reinforcements at different scales on mechanical properties of epoxy adhesives and adhesivejoints: a review", J. Adhes., 94(13), 1082-1121. https://doi.org/10.1080/00218464.2018.1452736. 
  25. Shang, X., Marques, E.A.S., Machado, J.J.M., Carbas, R.J.C., Jiang, D. and da Silva, L.F.M. (2019), "Review on techniques to improve the strength of adhesive joints with composite adherends", Compos. Part B: Eng., 177(15), 107363. https://doi.org/10.1016/j.compositesb.2019.107363. 
  26. Shishesaz, M. and Bavi, N. (2013), "Shear stress distribution in adhesive layers of a double-lap joint with void or bond separation", J. Adhes. Sci. Tech., 27(11), 1197-1225. https://doi.org/10.1080/01694243.2012.735914. 
  27. Smith, M. (2009), ABAQUS/CAE, User's Manual, Hibbitt, Karlsson & Sorensen, Inc. 
  28. Tang, J.H., Sridhar, I. and Srikanth, N. (2013), "Static and fatigue failure analysis of adhesively bonded thick composite single lap joints", Compos. Sci. Technol., 86(24), 18-25. https://doi.org/10.1016/j.compscitech.2013.06.018. 
  29. Wu, Z.J., Romeijn, A. and Wardenier, J. (1997), "Stress expressions of single-lap adhesive joints of dissimilar adherends", Compos. Struct., 38(1-4), 273-280. https://doi.org/10.1016/S0263-8223(97)00062-7. 
  30. Zielecki, W., Kubit, A., Kluz, R. and Trzepiecinski, T. (2017) "Investigating the influence of the chamfer and fillet on the high-cyclic fatigue strength of adhesive joints of steel parts", J. Adhes. Sci. Technol., 31(6), 627-644. https://doi.org/10.1080/01694243.2016.1229521.