DOI QR코드

DOI QR Code

Enhancing air traffic management efficiency through edge computing and image-aided navigation

  • Pradum Behl (School of Aeronautical Sciences, Hindustan Institute of Technology and Sciences, Rajiv Gandhi Salai (OMR)) ;
  • S. Charulatha (School of Aeronautical Sciences, Hindustan Institute of Technology and Sciences, Rajiv Gandhi Salai (OMR))
  • Received : 2023.12.20
  • Accepted : 2024.05.10
  • Published : 2024.03.25

Abstract

This paper presents a comprehensive investigation into the optimization of Flight Management Systems (FMS) with a particular emphasis on data processing efficiency by conducting a comparative study with conventional methods to edge-computing technology. The objective of this research is twofold. Firstly, it evaluates the performance of FMS navigation systems using conventional and edge computing methodologies. Secondly, it aims to extend the boundaries of knowledge in edge-computing technology by conducting a rigorous analysis of terrain data and its implications on flight path optimization along with communication with ground stations. The study employs a combination of simulation-based experimentation and algorithmic computations. Through strategic intervals along the flight path, critical parameters such as distance, altitude profiles, and flight path angles are dynamically assessed. Additionally, edge computing techniques enhance data processing speeds, ensuring adaptability to various scenarios. This paper challenges existing paradigms in flight management and opens avenues for further research in integrating edge computing within aviation technology. The findings presented herein carry significant implications for the aviation industry, ranging from improved operational efficiency to heightened safety measures.

Keywords

Acknowledgement

I would like to place on record our sincere thanks to all those who contributed to the successful completion of my paper. I would like to express my deep sense of gratitude to the Hindustan Institute of Technology and Science, Chennai for allowing me to do this paper. I would like to express our thanks to Dean (Aeronautical & Aerospace Engineering) Dr. R. Asokan, (Head of the Department of Aerospace Engineering) Dr. Parthasarathy Vasanthkumar for inspiring and motivating us to complete this paper. I would like to thank my guide and corresponding author, Dr. S. Charulatha for continually guiding and actively participating in the paper, and giving valuable suggestions to complete the same.

References

  1. Bekkouche, O., Taleb, T. and Bagaa, M. (2018), "UAVs traffic control based on multi-access edge computing", IEEE Global Communications Conference (GLOBECOM), 1-6. https://doi.org/10.1109/GLOCOM.2018.8647421.
  2. Chen, Q., Zhu, H., Yang, L., Chen, X., Pollin, S. and Vinogradov, E. (2021), "Edge computing assisted autonomous flight for UAV: Synergies between vision and communications", IEEE Commun. Mag., 59(1), 28-33. https://doi.org/10.1109/MCOM.001.2000501.
  3. Chun, B., Oh, B., Cho, C. and Lee, D. (2018), "Design and implementation of lightweight messaging middleware for edge computing", Proceedings of the 6th International Conference on Control, Mechatronics and Automation, 170-174. https://doi.org/10.1145/3284516.3284535.
  4. Dogea, R., Yan, X.T. and Millar, R. (2023), "Implementation of an edge-fog-cloud computing IoT architecture in aircraft components", MRS Commun., 13, 416-424. https://doi.org/10.1557/s43579-023-00364-z.
  5. Dubey, A., Emfinger, W., Gokhale, A., Kumar, P., McDermet, D., Bapty, T. and Karsai, G. (2019), "Enabling strong isolation for distributed real-time applications in edge computing scenarios", IEEE Aerosp. Electron. Syst. Mag., 34(7), 32-45. https://doi.org/10.1109/MAES.2019.2905921.
  6. Fazeldehkordi, E. and Gronli, T.M. (2022), "A survey of security architectures for edge computing-based IoT", IoT, 3(3), 332-365. https://doi.org/10.3390/iot3030019.
  7. Hayat, S., Jung, R., Hellwagner, H., Bettstetter, C., Emini, D. and Schnieders, D. (2021), "Edge computing in 5G for drone navigation: What to offload?", IEEE Robot. Autom. Lett., 6(2), 2571-2578. https://doi.org/10.1109/LRA.2021.3062319.
  8. Kamyar, R. and Taheri, E. (2014), "Aircraft optimal terrain/threat-based trajectory planning and control", J. Guid., Control Dyn., 37(2). 466-483. https://doi.org/10.2514/1.61339.
  9. Khan, A., Khattak, K.S., Khan, Z.H., Gulliver, T.A. and Abdullah. (2023), "Edge computing for effective and efficient traffic characterization", Sensor. (Basel, Switzerland), 23(23), 9385. https://doi.org/10.3390/s23239385.
  10. Koubaa, A., Ammar, A., Alahdab, M., Kanhouch, A. and Azar, A.T. (2020), "DeepBrain: Experimental evaluation of cloud-based computation offloading and edge computing in the internet-of-drones for deep learning applications", Sensor., 20, 5240. https://doi.org/10.3390/s20185240.
  11. Liu, K., Chauhan, S., Devaraj, R., Shahi, S. and Sreekumar, U. (2019), "Enabling autonomous unmanned aerial systems via edge computing", IEEE International Conference on Service-Oriented System Engineering (SOSE), 374-3745. https://doi.org/10.1109/SOSE.2019.00063.
  12. Liu, Y., Jiang, L., Qi, Q., Xie, K. and Xie, S. (2023), "Online computation offloading for collaborative Space/Aerial-aided edge computing toward 6G system", IEEE Trans. Vehicular Technol., 73(2), 2495-2505. http://doi.org/10.1109/TVT.2023.3312676.
  13. Lu, P. and Pierson, B.L. (1995). "Optimal aircraft terrain-following analysis and trajectory generation", J. Guid., Control Dyn., 18(3), 555-560. https://doi.org/10.2514/3.21422.
  14. McEnroe, P., Wang, S. and Liyanage, M. (2022), "A survey on the convergence of edge computing and AI for UAVs: Opportunities and challenges", IEEE Intern. Thing. J., 9(17), 15435-15459. https://doi.org/10.1109/JIOT.2022.3176400.
  15. Messous, M.A., Hellwagner, H., Senouci, S.M., Emini, D. and Schnieders, D. (2020), "Edge computing for visual navigation and mapping in a UAV network", IEEE International Conference on Communications (ICC), 1-6. http://dx.doi.org/10.1109/ICC40277.2020.9149087.
  16. Mijuskovic, A., Bemthuis, R., Aldea, A. and Havinga, P. (2020), "An enterprise architecture based on cloud, fog and edge computing for an airfield lighting management system", IEEE 24th International Enterprise Distributed Object Computing Workshop (EDOCW), October. https://doi.org/10.1109/EDOCW49879.2020.00021.
  17. Naveen, S. and Kounte, M.R. (2019), "Key technologies and challenges in IoT edge computing", Third International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), 61-65. https://doi.org/10.1109/I-SMAC47947.2019.9032541.
  18. Qi, J., Song, Q. and Feng, J. (2020), "A novel edge computing based area navigation scheme", CMC-Comput. Mater. Continua, 65(3), 2385-2396. https://doi.org/10.32604/cmc.2020.011651.
  19. Satyanarayanan, M. (2017), "The emergence of edge computing", Comput., 50(1), 30-39. https://doi.org/10.1109/MC.2017.9.
  20. Shrestha, R., Oh, I. and Kim, S. (2021), "A survey on operation concept, advancements, and challenging issues of urban air traffic management", Front. Future Transp., 2, 626935. https://doi.org/10.3389/ffutr.2021.626935.
  21. Song, Z., Bian, H. and Zielinski, A. (2016), "Application of acoustic image processing in underwater terrain aided navigation", Ocean Eng., 121, 279-290. https://doi.org/10.1016/j.oceaneng.2016.05.039.
  22. Subburaj, B., Jayachandran, U.M., Arumugham, V. and Suthanthira Amalraj, M.J.A. (2023), "A self-adaptive trajectory optimization algorithm using fuzzy logic for mobile edge computing system assisted by unmanned aerial vehicle", Drone., 7, 266. https://doi.org/10.3390/drones7040266.
  23. Venable, D.T. and Raquet, J.F. (2016), "Large scale image aided navigation", IEEE Trans. Aerosp. Electron. Syst., 52(6), 2849-2860. https://doi.org/10.1109/TAES.2016.150603.
  24. Vezinet, J., Escher, A.C., Guillet, A. and Macabiau, C. (2013), "State of the art of image-aided navigation techniques for aircraft approach and landing", Proceedings of the 2013 International Technical Meeting of The Institute of Navigation, 473-607.
  25. Wang, T., Fang, Q., Liu, G., Chi, M., Luo, Y. and Shen, J. (2022), "TN-GTN: fault diagnosis of aircraft wiring network over edge computing", J. Wireless Commun. Network., 62. https://doi.org/10.1186/s13638-022-02148-w.
  26. Zheng, J., Yang, T., Liu, H., Su, T. and Wan, L. (2021), "Accurate detection and localization of unmanned aerial vehicle swarms-enabled mobile edge computing system", IEEE Trans. Indus. Inform., 17(7), 5059-5067. https://doi.org/10.1109/TII.2020.3015730.
  27. Zhou, F., Hu, R. Q., Li, Z. and Wang, Y. (2020), "Mobile edge computing in unmanned aerial vehicle networks", IEEE Wireless Commun., 27(1), 140-146. https://doi.org/10.1109/MWC.001.1800594.