DOI QR코드

DOI QR Code

A prototype to improve endurance of solar powered aircraft using MPPT and rechargeable battery

  • Leo Paul Amuthan George (Faculty of Engineering, Emirates Aviation University) ;
  • Anju Anna Jacob (Faculty of Engineering, Emirates Aviation University)
  • 투고 : 2023.12.28
  • 심사 : 2024.04.26
  • 발행 : 2024.03.25

초록

This paper addresses the enhancement of long-endurance solar-powered aircraft through the integration of a rechargeable battery and Maximum Power Point Tracking (MPPT) controller. Traditional long-endurance aircraft often rely on non-renewable energy sourcessuch as batteries orjetfuel, contributing to carbon emissions. The proposed system aims to mitigate these environmental impacts by harnessing solar energy and efficiently managing its storage and utilization. The MPPT controller optimizes the power output of photovoltaic cells, enabling simultaneous charging and discharging of the battery for propulsion and servo control. A prototype is presented to illustrate the practical implementation and functionality of the proposed design, marking a promising step towards more sustainable and enduring solar-powered flight.

키워드

과제정보

The authors would like to express their gratitude towards Faculty of Engineering, Emirates Aviation University, Dubai for providing the necessary infrastructure to carry out this work successfully.

참고문헌

  1. Baharozu, E., Soykan, G. and Ozerdem, M.B. (2017), "Future aircraft concept in terms of energy efficiency and environmental factors", Energy, 140, 1368-1377. https://doi.org/10.1016/j.energy.2017.09.007.
  2. Binkowski, T. (2020), "A conductance-based MPPT method with reduced impact of the voltage ripple for one-phase solar powered vehicle or aircraft systems", Energi., 13(6), 1496. https://doi.org/10.3390/en13061496.
  3. Choi, J., Lee, J.H., Jung, Y.G. and Park, H. (2020), "Enhanced efficiency of the brushless direct current motor by introducing air flow for cooling", Heat Mass Transf., 56, 1825-1831. https://doi.org/10.1007/s00231-020-02827-8.
  4. Gao, X.Z., Hou, Z.X., Guo, Z., Liu, J.X. and Chen, X.Q. (2013), "Energy management strategy for solar-powered high-altitude long-endurance aircraft", Energy Convers. Manage., 70, 20-30. https://doi.org/10.1016/j.enconman.2013.01.007.
  5. Gierulski, M.P. and Khandelwal, B. (2021), "Electric-powered aircraft", Aviation Fuels, 271-296. https://doi.org/10.1016/B978-0-12-818314-4.00009-1.
  6. Gonzalez-Garay, A., Heuberger-Austin, C., Fu, X., Klokkenburg, M., Zhang, D., van der Made, A. and Shah, N. (2022), "Unravelling the potential of sustainable aviation fuels to decarbonise the aviation sector", Energy Environ. Sci., 15(8), 3291-3309. https://doi.org/10.1039/D1EE03437E.
  7. Hassanalian, M., Radmanesh, M. and Sedaghat, A. (2014), "Increasing flight endurance of MAVs using multiple quantum well solar cells", Int. J. Aeronaut. Space Sci., 15(2), 212-217. https://doi.org/10.5139/IJASS.2014.15.2.212.
  8. Khoshnoud, F., Esat, I.I., de Silva, C.W., Rhodes, J.D., Kiessling, A.A. and Quadrelli, M.B. (2020), "Self-powered solar aerial vehicles: towards infinite endurance UAVs", Unmann. Syst., 8(02), 95-117. https://doi.org/10.1142/S2301385020500077.
  9. Kousoulidou, M. and Lonza, L. (2016), "Biofuels in aviation: Fuel demand and CO2 emissions evolution in Europe toward 2030", Transp. Res. Part D: Transp. Environ., 46, 166-181. https://doi.org/10.1016/j.trd.2016.03.018.
  10. Lotfabadi, P. (2015), "Analyzing passive solar strategies in the case of high-rise building", Renew. Sustain. Energy Rev., 52, 1340-1353. https://doi.org/10.1016/j.rser.2015.07.189.
  11. Murdoch, S. and Reynoso, S. (2013), "Design and implementation of a MPPT circuit for a solar UAV", IEEE Lat. Am. Trans., 11(1), 108-111. https://doi.org/10.1109/TLA.2013.6502787
  12. Ram, J.P., Babu, T.S. and Rajasekar, N. (2017), "A comprehensive review on solar PV maximum power point tracking techniques", Renew. Sustain. Energy Rev., 67, 826-847. https://doi.org/10.1016/j.rser.2016.09.076.
  13. Safyanu, B.D., Abdullah, M.N. and Omar, Z. (2019), "Review of power device for solar-powered aircraft applications", J. Aerosp. Technol. Manage., 11, https://doi.org/10.5028/jatm.v11.1077.
  14. Sener, E., Turk, I., Yazar, I. and Karakoc, T.H. (2020), "Solar powered UAV model on MATLAB/Simulink using incremental conductance MPPT technique", Aircraft Eng. Aerosp. Technol., 92(2), 93-100. https://doi.org/10.1108/AEAT-04-2019-0063.
  15. Zhu, X., Guo, Z. and Hou, Z. (2014), "Solar-powered airplanes: A historical perspective and future challenges", Progr. Aerosp. Sci., 71, 36-53. https://doi.org/10.1016/j.paerosci.2014.06.003.