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INTRODUCTION TO MODELS OF OPINION DYNAMICS

AND THEIR EXAMPLES

Sung-hwan Kim and Ji Eun Kim∗

Abstract. This paper aims to provide a general review of Opinion Dy-

namics (OD) and its related models, along with application examples for

special agents. We will discuss special classes of social actors, such as
informed actors, opponents, and extremists, in the context of opinion dy-

namics. Our main objective is to determine the extent to which opinion

dynamics, as a mathematical sociology, relates to social reality. To achieve
this, we present key elements of mathematical sociology in Opinion Dy-

namics, which we then apply to real socioeconomic phenomena using mod-

eling assumptions and mathematical formulations.

1. Introduction

Over the past few decades, there has been a significant increase in research
on opinion dynamics, which provides mathematical models to simulate how
opinions are diffused across social networks. Social networks are comprised of
N agents that interact with one another through connections or links [30]. In
the simplest scenario of an undirected network, there exists a single link with
an influence weight wij between two communicating agents i and j. Earlier
approaches to OD from the 1950s to the 1990s were mainly linear [1, 6, 7, 10, 11,
12, 20], which implies that communication patterns and interaction structures
remained fixed. Two fundamental models in this context are the DeGroot model
[7, 20] and the Friedkin-Jensen model [11, 12]. The DeGroot model assumes that
agents’ opinions are updated by taking a weighted average of their own and
their neighbors’ opinions. The Friedkin-Jensen model assumes that each agent
has both an initial opinion and a stubbornness parameter, which measures how
much an agent’s opinion will change in response to others. In both models, the
opinions of all agents converge to a consensus state over time. These models have
been extensively studied, and their results have been compared with empirical
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observations to gain insights into how opinions are formed and how they change
over time.

In recent literature, there has been a noticeable shift towards non-linear ap-
proaches. Non-linearity in this context refers to situations where the influence
weights and/or communication interactions between agents are dependent on
prior opinions expressed by them. Non-linear models can be classified into three
major categories: continuous, discrete, and mixed. In continuous models, agents’
opinions can be expressed within a defined interval, such as [0, 1] or [−1, 1].
In discrete models, agents’ opinions can only assume specific values, often bi-
nary, such as 0/1, yes/no, support/opposition, or buy/sell. In mixed models,
agents’ continuous opinions are expressed as discrete choices. Additionally, there
are multi-dimensional (vector) representations available for all the above cases
[3, 25]. These vector representations allow for more nuanced analysis of agent
opinions and can provide insights into the relationships between different fac-
tors influencing those opinions. In the upcoming sections, we will delve into the
intricate world of opinion dynamics models. Section 2 will be dedicated to a
comprehensive exploration of Linear Models, with a detailed focus on the De-
Groot model and Friedkin-Jensen model. These models play a pivotal role in
comprehending the dynamics of linear opinions. Moving on to Section 3, we will
embark on an in-depth study of Nonlinear Models, encompassing continuous
models, discrete models, and mixed models. Section 4 will shine a spotlight on
special classes of social agents, including informed agents, contrarian agents,
and extremist agents, shedding light on their unique roles within opinion dy-
namics. Finally, in Section 5, the Conclusion, we will succinctly summarize the
contents of this paper and present potential avenues for future research, along
with their anticipated impact.

2. Linear Models of opinion dynamics

2.1. The DeGroot model

The DeGroot model is a mathematical framework used to study how opin-
ions evolve in a group of communicating agents. In the model, each agent is
assigned an initial opinion value, which represents their belief or attitude to-
wards a particular issue. The opinion value is a number between 0 and 1, where
0 means complete disagreement and 1 means complete agreement with a par-
ticular viewpoint.

The model assumes that agents communicate with each other and that the
opinions of agents can influence each other. The evolution of the opinion of each
agent is determined by a linear combination of the opinions of all other agents
in the system. This linear combination is a weighted average of the opinions
of other agents, where each weight is a measure of the influence that the other
agent has on the opinion of the agent in question.

The weight assigned to each agent i is proportional to the similarity between
the opinion of the agent and the opinion of the other agent. In particular,
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agents with similar opinions are given higher weights than those with dissimilar
opinions. The weights are normalized such that they sum up to 1,

N∑
j=1

wij = 1,

which ensures that the opinion of each agent is always a valid probability dis-
tribution over the interval [0, 1].

The DeGroot model has been widely used to study opinion dynamics in a va-
riety of domains, including social networks, political science, and economics. It
provides a useful tool for exploring how opinions change over time and how dif-
ferent factors, such as the structure of communication networks or the strength
of social influence, affect the evolution of opinions in a group of agents:

oi(t+ 1) =

N∑
j=1

wijoj(t)

To update the opinion vector for all agents at time step t + 1, a formula
is used which involves multiplying the matrix W with the opinion vector at
time step t. The resulting opinion vector, denoted as O(t + 1), represents the
collective opinion of all agents at the next time step. By applying this formula
repeatedly, we can obtain the opinion vector at a later time step , which can be
expressed as

O(t+ τ) = W τO(t).

As per a reference cited in [7], consensus among the agents can be achieved if
a specific condition is met. The condition states that if at least one column of the
matrix Wτ contains solely positive elements, then consensus can be achieved.
This means that all agents will eventually converge to the same opinion if the
matrix W is designed in a way that satisfies this condition.

2.2. The Friedkin-Jensen model (FJ)

The FJ model is a modified version of the DeGroot model that accounts for
an agent i’s stubbornness when forming opinions. The parameter si represents
the stubbornness level of agent i, indicating the tendency to adhere to their
initial beliefs. The influence of other agents on agent i is determined by the
value (1− si), which is a measure of their openness to external opinions.

The evolution of opinions is modeled using the following formula:

oi(t+ 1) = sioi(0) + (1− si)

N∑
j=1

wijoj(t),

where oi(t+1) represents the opinion of agent i at time t+1, oi(0) is the initial
opinion of agent i, wij is the weight of the connection between agents i and j,
and oj(t) is the opinion of agent j at time t.
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This formula can be represented in matrix form as

O(t+ 1) = SO(0) + (I − S)W τO(t),

where S is a diagonal matrix of size N × N containing the stubbornness lev-
els of each agent, and I is the identity matrix. The matrix W represents the
connectivity between agents and the strength of their influence on each other.

Unlike the DeGroot model, the convergence of matrix W τ does not necessar-
ily lead to consensus. Consensus is conditional on the stubbornness level of the
agents. If most of the agents have a high level of stubbornness, then consensus
may not be reached. However, if the agents are relatively open-minded, then
the system can converge to a consensus state.

3. Nonlinear Models of opinion dynamics

3.1. Continuous Models

In the OD literature, there are several non-linear continuous models that
have been studied. The Bounded Confidence class of models [9, 16, 21, 29] is
particularly noteworthy. These models are based on the assumption that social
influence can only occur when the opinions oi(t) and oj(t) of two neighboring
agents i and j are below a certain tolerance threshold ε and sufficiently close:

|oj(t)− oi(t)| < ε. (1)

In other words, the Bounded Confidence model posits that individuals are
more likely to be influenced by those who hold similar opinions to their own.
If the difference between two individuals’ opinions is greater than the tolerance
threshold ε, then they are unlikely to be influenced by one another. However,
if their opinions are within this threshold, then they may be influenced by each
other’s views.

Overall, the Bounded Confidence model provides a useful framework for un-
derstanding how social influence operates in a variety of contexts. By accounting
for the role of tolerance thresholds in shaping social influence, this model can
help shed light on a wide range of social phenomena.

The Bounded Confidence model is a popular framework used to study opin-
ion dynamics in social networks. The Hegselmann-Krause (HK) model and the
Deffuant-Weisbuch (DW) model are the most well-known among these models
[31]. While they share some similarities, they differ primarily in their communi-
cation assumptions. In the HK model, each agent communicates simultaneously
with all sufficiently like-minded neighbors. On the other hand, in the DWmodel,
communication is realized between two random like-minded neighbors at a time.
In the HK model, the evolution of an agent’s opinion is influenced by the opin-
ions of their like-minded neighbors and the degree of confidence they have in
their own opinion:

oi(t+ 1) =
1

|Si(j, ε)|
∑

j∈Si(j,ε)

oj(t),
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where Si(j, ε) = {j : |oj(t)−oi(t)| < ε} is the set containing those neighbors j of
agent i with a sufficiently close opinion to his own. This leads to a convergence
of opinions among agents with similar initial opinions.

In the DW model, two agents communicate with each other and if a certain
condition is satisfied, a mutual opinion update takes place. The condition that
needs to be met is expressed by equation (1): oi(t+ 1) = oi(t) + µ(oj(t)− oi(t)),

oj(t+ 1) = oj(t) + µ(oi(t)− oj(t)),
(2)

The model includes a parameter called µ which determines the convergence rate
between the two agents.

If the tolerance threshold ε is set to a high value, then there is a greater
likelihood of opinion convergence between the two agents. This means that
their opinions will become more similar to each other. On the other hand, if the
tolerance threshold ε is set to a low value, then opinion clustering takes place.
This means that groups of agents will have similar opinions and there will be
less interaction between groups.

The DW model is designed to simulate social dynamics and how opinions are
formed and changed over time based on interactions between individuals. By
studying these dynamics, researchers can gain a better understanding of how
social phenomena such as polarization and echo chambers arise.

3.2. Discrete Models

In the realm of discrete opinion dynamics (OD) modeling, several models
have been developed to understand the behavior of agents and their opinions.
Among these models, the voter model [5, 17], Sznajd model [4, 26, 27, 28], and
majority rule model [13, 14, 15, 19] have received much attention. The voter
model is typically implemented on a square lattice, where each agent has a
binary opinion oi(t), which can be either 0 or 1. At each time step, an agent i
randomly adopts the opinion of one of its neighbors. In other words, an agent
updates its opinion oj(t) to that of a randomly selected neighbor:

oi(t+ 1) = oj(t).

On the other hand, the Sznajd model is implemented on a line with agents placed
at regular intervals. Here, a pair of neighboring agents is randomly selected at
each step. If their opinions are identical, then the two neighboring agents on
either side of the pair (i.e., i− 1 and i+ 2) will adopt the same opinion as the
pair (i.e., i and i+ 1):

oi`1(t+ 1) = oi+2(t+ 1) = oi+1(t) = oi(t).

However, if their opinions differ, then each agent will influence only its adjacent
neighbor. Specifically, the agent to the left of the pair (i.e., i − 1) will adopt
the opinion of i, while the agent to the right of the pair (i.e., i+2) will take on
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the opinion of i+1. These models help us understand the complex dynamics of
opinion formation in diverse contexts:

oi`1(t+ 1) = oi(t) and oi+2(t+ 1) = oi+1(t).

The basic concept involves the random clustering of the population into
groups of three agents at each hierarchical level. The majority rule model is
a voting system that operates across different hierarchical levels. Within each
group, the three members vote between two candidates, type A or type B. The
voting result at the first hierarchical level influences the composition of the pop-
ulation at the next level. After clustering in groups of three at the next level,
the same voting process is repeated until vote convergence is observed.

The probability of a type A candidate being elected at level n+1 is calculated
using the following formula:

PA(n+ 1) = P 3
A(n) + 3P 2

A(n)(1− PA(n)),

where PA(n) represents the probability of a type A candidate being elected
at level n. It can be shown that when PA(0) is less than 1

2 , the probability
sequence PA(n) eventually converges to zero, which results in the elimination
of A. However, when PA(0) is greater than

1
2 , the sequence converges to 1, and

the prevalence of A is certain.
The key finding from this voting system is that although it operates in a fully

democratic manner, the condition PA(0) > PB(0) (or the reverse) is sufficient
for a totalitarian result to eventually emerge. This means that one of the two
political positions (A or B) will be all but excluded, regardless of the amount
of initial support for B or A. Therefore, the majority rule model has significant
implications for democratic societies, as it highlights the potential for a highly
polarized political environment.

The findings discussed above, which may seem counter-intuitive at first, actu-
ally demonstrate the usefulness of Sociophysics in identifying underlying issues
that qualitative studies are often unable to detect. Specifically, multi-stage elec-
toral systems that operate in a bottom-up manner, as found in socialist or lib-
eral democratic states such as the US presidential electoral system, bear certain
similarities to the majority rule model. Sociophysics can reveal hidden holes in
these seemingly robust social or political processes, which may not be immedi-
ately apparent through traditional qualitative analysis. By using a quantitative
approach to study these complex systems, Sociophysics can provide valuable
insights into the workings of these systems and help identify potential areas for
improvement.

3.3. Mixed Models

Sophisticated mixed models have been developed to study the dynamics of
opinion formation and diffusion in a social network. One such model is the
Continuous Opinion and Discrete Actions (CODA) model [22, 23, 24], which
has gained significant prominence in this area of research.
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In the CODA model, each agent i in a social network internalizes his prefer-
ence at a given time step t in the form of a continuous probability Pi(t), which
represents his level of agreement or disagreement with a particular issue. The
agent then expresses his opinion to other agents in the form of a quantized bi-
nary opinion oi(t), taking values of either −1 or 1. This is done by calculating
oi(t) as

oi(t) = sign(Pi(t)− 0.5).

When an agent i is influenced by another agent j in the network, his internalized
preference is modified as

ui(t) = log
( Pi(t)

1− Pi(t)

)
,

and shifts to

ui(t+ 1) = ui(t)± ai = ui(t) + oj(t)ai,

where ai is the susceptibility parameter of agent i to the opinion oj(t) of his
neighbor j. This means that the level of agreement or disagreement of agent i
with a particular issue shifts based on the opinion of his neighbor j. As a result,
Pi(t + 1) is no longer equal to Pi(t), Pi(t + 1) ̸= Pi(t), and it is probable that
agent i will change his professed opinion oi(t + 1) in response to the influence
of his neighbor:

oi(t+ 1) ̸= oi(t).

This way, opinion diffusion can take place in the social network.

4. Special Classes of Social Agents

4.1. Informed Agents

It has been observed that social influence is not only dependent on the ex-
istence of key opinion leaders or influencers who spread their opinions to the
rest of the population, but also on the presence of a critical mass of easily in-
fluenced individuals. This critical mass is essential for effective social influence,
as it initiates a cascading effect that leads to widespread social influence. Much
of the available literature on organizational development focuses on the impact
of informed agents, also known as individuals with hidden agendas who act as
secret advertisers of ideas and norms to the rest of the population. Studies on
informed agents are grounded on findings derived from studies on animal popu-
lation dynamics, which suggest that the collective behavior of social groups can
be guided by a small fraction of purposeful agents. Therefore, it is imperative
to understand the role of informed agents in social influence and how they can
impact the behavior of a population.

In reference [2], it is observed that when considering the assumption of
bounded confidence (1), the process of opinion diffusion from a regular agent j
to another regular agent i is carried out in the following manner:

oi(t+ 1) = wii(t)oi(t) + wji(t)oj(t).
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The opinion oi(t + 1) of agent i at time t + 1 is influenced by two factors: the
tendency wii(t) of agent i to adhere to his opinion at time t and the interpersonal
social influence wji(t), which is dependent on their previous opinions at time t,
of agent j on agent i.

However, when an informed agent k is present, a third parameter wg
k(t) is

added to the opinion diffusion process. This additional parameter indicates the
hidden devotion of agent k towards the pursuit of a pre-specified goal og. There-
fore, when opinion diffusion occurs from a regular agent λ to an informed agent
k, the process is realized as follows:

ok(t+ 1) = wkk(t)ok(t) + wλk(t)oλ(t) + wg
k(t)o

g.

The opinion of informed agent k at time t + 1 is influenced by the tendency
wkk(t) of agent k to adhere to his opinion at time t. The interpersonal influence
wλk(t) of regular agent λ on informed agent k, and the hidden devotion wg

k(t)
of informed agent k towards the pursuit of a pre-specified goal.

In the context of social network analysis, an informed agent is an individ-
ual who has access to relevant information and can make informed decisions
based on it. However, it is important to note that even an informed agent can
be influenced by other individuals in their social network. Despite this, it is
possible to steer public opinion by using a small set of informed agents who
have an unchanging pre-set goal, particularly if these agents are well-connected
individuals.

It is worth mentioning that informed agents do not necessarily need to be
prominent members of society; they can be anyone who possesses relevant in-
formation and has the ability to disseminate it within their social network.

A more comprehensive approach to understanding the processes of social
change induced by informed agents has been presented in a research paper
(reference [18]). This research introduces the concept of change agents, who not
only mimic the opinions of their neighbors but also attempt to divert them
towards a preferred direction. Change agents gradually shift their neighbors’
opinions towards a pre-set goal, which can initiate a cascading diffusion of social
influence.

To achieve this goal, change agents employ the strategy of salami slicing,
which involves slicing a large goal into smaller, more achievable pieces. By do-
ing so, change agents can gradually shift their neighbors’ opinions towards the
pre-set goal without raising any red flags or causing any significant resistance.
Ultimately, this approach can lead to a significant change in public opinion, as
well as an overall shift in societal norms and values.

The process of opinion diffusion for regular agents in the context of social
networks is often modeled using various implementations of the DeGroot model.
However, for a change agent, identified as k, the opinion update works in a
slightly different way. Specifically, the opinion of the change agent at time t+1,
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denoted as ok(t+ 1), is updated as a sum of two terms:

ok(t+ 1) = ōoutk (t) + sk(t)(o
g − ōoutk (t)),

The first term, ōoutk (t), denoted by

ōoutk (t) =
1

|S+
k |

∑
λ∈S+

k

oλ(t),

is the average opinion of all out-neighbors of k to whom k is connected with
a positive outgoing (directed) link weight wk→λ. This set of out-neighbors is
represented by

S+
k = λ : wk = wk→λ > 0.

The second term, sk(t)(o
g − ōoutk (t)), is a time-dependent slicing parameter

lying in the interval [0, 1], which represents a gradual shift in the change agent’s
professed opinion over time.

Essentially, the change agent k is equipped with the ability to induce opinion
change in its out-neighbors through this mechanism. The average opinion of the
out-neighbors is gradually incorporated into the change agent’s public stance,
allowing it to steer the direction of the network’s opinion dynamics. This process
represents an extension of the DeGroot model that is particularly useful in
analyzing the impact of change agents within a social network.

4.2. Contrarian Agents

Contrarians are individuals who tend to hold views that are opposed to those
held by the majority. To account for the influence of such individuals, a modi-
fication of the majority rule model has been proposed. This modification intro-
duces a density parameter a to represent the presence of contrarian agents in
the population. The aim is to investigate the impact of contrarians on electoral
outcomes of lower-level groups. The modified model can be expressed as follows:

PA(t+1) = (1−a){P 3
A(t)+3P 2

A(t)(1−PA(t))}+a{P 3
B(t)+3P 2

B(t)(1−PB(t))},
where PA(n) and PB(n) are the probabilities of a candidate of type A or B
being elected at level n. The introduction of contrarian agents in the model
helps to avoid the totalitarian outcomes that are typical of the majority rule
model, especially for small values of a. For instance, when a = 0.1, the opinion
convergence is more balanced, with a shift of 0.85 to 0.15 in favor of outcome
A, instead of a complete convergence of 1 to 0.

4.3. Extremist Agents

The term extremist agents is used to describe individuals whose opinions fall
on the far ends of a given spectrum. For instance, if agent opinions are rated on
a scale of −1 to 1, extremist agents would have opinions that are very close to
−1 or 1. Studies have shown that the presence of extremist agents in a social
network can have a significant impact on the diffusion of opinions within the
network. In particular, the views of extremist agents can eventually become
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widely accepted, especially if there is a degree of uncertainty among regular
agents.

To model opinion uncertainty, it is assumed that each agent has an opinion
segment, si = [oi − ui, oi + ui], where oi represents the agent’s opinion and ui

represents the degree of uncertainty. The degree of overlap between two agents
i and j is measured by the segment overlap,

hji = min(oj + uj , oi + ui)−max(oj − uj , oi − ui),

while the non-overlapping part is 2uj−hji. The relative agreement term,
hji

uj
−1,

is obtained by subtracting the two quantities and dividing by uj .
If the condition hji > uj is met, then opinion diffusion from agent j to agent

i is possible. In this case, the DW Equation (2) for agent i takes the form:

oi(t+ 1) = oi(t) + µ
(hji(t)

uj(t)
− 1

)
(oj(t)− oi(t)),

ui(t+ 1) = ui(t) + µ
(hji(t)

uj(t)
− 1

)
(uj(t)− ui(t)),

where µ is a convergence parameter that determines the speed of the diffu-
sion process. Given that extremist agents have a narrower opinion uncertainty
than regular agents, the condition hji > uj is usually met when regular agents
interact with extremists. This leads to the diffusion and, in some cases, the
prevalence of extremist opinions within the social network.

5. Conclusion

The study of the social world through a mathematics-based quantitative ap-
proach can be a fruitful endeavor. By presenting key methods and applications
with a more specified socio-economic character, we can focus on the interaction
between agents. A wealth of available time series data, such as financial trans-
actions, instances of collaboration, or common participation in social events,
can be used to explore these topics. However, we believe that a more detailed
mathematical depiction of the co-evolution of agent and structure is necessary.
This approach is relevant to all categories of social diffusion processes analyzed
herein.

In the case of opinion diffusion (OD), it is essential for firms, organizations,
and governmental agencies to adopt current norms and prevent the spread of
disruptive disinformation/misinformation and fake news in relevant social net-
works. Opinion diffusion modeling can be considered a must-have tool to prevent
the spread of such information. By incorporating this tool, we can monitor the
spread of false information and help maintain social stability.

Mathematical sociology is a field that uses mathematical modeling, statistical
analysis, and computational simulations to study complex social phenomena. It
offers a quantitative approach to the study of social systems, which enables
researchers to move beyond purely qualitative or descriptive approaches and
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gain a deeper understanding of social systems. Recent developments and studies
in mathematical sociology have contributed significantly to our understanding of
social networks, collective behavior, social dynamics, and modeling approaches.

One of the key areas of research in mathematical sociology is social network
analysis. This field allows researchers to explore network structures, identify
influential nodes, and analyze information diffusion. Social network analysis
has become a fundamental area of research within mathematical sociology, and
it has contributed to our understanding of how social networks function and
how they influence the behavior of individuals within them.

Another important area of research in mathematical sociology is the study
of collective behavior and social dynamics. This field has provided insights into
opinion formation, social influence, coordination, cooperation, and the spread
of innovations or cultural traits. Mathematical models, such as agent-based
models, game theory, and mathematical formalisms, have played a central role
in capturing these dynamics and uncovering the underlying mechanisms of social
phenomena.

Mathematical sociology has applications in various social science domains,
including economics, political science, anthropology, and urban studies. By in-
corporating mathematical rigor into these disciplines, researchers can analyze
complex social systems and make informed policy decisions.

Future research in mathematical sociology should focus on integrating big
data and computational advances into research methodologies, enabling the
analysis of large-scale social systems and testing more complex models. Inter-
disciplinary collaborations between sociologists, mathematicians, computer sci-
entists, and other social scientists will be crucial for addressing these challenges
and advancing the field.

To further enhance the applicability and relevance of mathematical models
in sociology, researchers should also address ethical considerations, account for
long-term dynamics and historical context, and incorporate a nuanced under-
standing of human agency. These factors are important in ensuring that math-
ematical models are valid and useful tools for understanding complex social
systems.

In summary, mathematical sociology offers a quantitative foundation for
studying and understanding social phenomena. By combining mathematical
modeling, statistical analysis, and computational simulations, it provides valu-
able insights into social networks, collective behavior, social dynamics, and
decision-making processes. Although the field faces new challenges, its inter-
disciplinary nature and the potential to integrate emerging technologies and
methodologies ensure its continued relevance and impact in the study of com-
plex social systems.
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