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ON THE EQUATIONS DEFINING SOME RATIONAL CURVES

OF MAXIMAL GENUS IN P3

Wanseok LEE and Shuailing Yang∗

Abstract. For a nondegenerate irreducible projective variety, it is a clas-

sical problem to describe its defining equations and the syzygies among

them. In this paper, we precisely determine a minimal generating set and
the minimal free resolution of defining ideals of some rational curves of

maximal genus in P3.

1. Introduction

Throughout this paper, we work over an algebraically closed field K of arbitrary
characteristic. Let Pr and R = K[X0, X1, . . . , Xr] be respectively the projective
r-space and the homogeneous coordinate ring of Pr. Let X ⊂ Pr be a nonde-
generate projective variety and IX be the defining ideal of X. To understand
a given variety X, it is a natural problem to study a minimal generating set of
IX and the syzygies among them. Although there have been many results on
this problem (cf. [1], [2], [3], [4], [6], [8], [10] and so on), to the authors best
knowledge, it is still a very difficult problem.
Along this line, the main purpose of this paper is to provide a complete de-
scription of a minimal generating set and the minimal free resolution for some
rational curves in P3 which are attained the possibly maximal arithmetic genus.
For a reduced, irreducible and nondegenerate curve C ⊂ Pr of degree d, in the
classical paper [1], Castelnuovo showed that the arithmetic genus g of C can not
exceed the value π0(d, r) which is explicitly determined by d and r. And he also
classified the extremal case. These curves are arithmetically Cohen-Macaulay
and contained in a surface of minimal degree.

Let T := K[s, t] be the homogeneous coordinate ring of P1. And let Tk be

the k-th graded component of T for each k ≥ 1. Then we call the curve C̃
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parameterized as

C̃ = {[sd(P ) : sd−1t(P ) : · · · : std−1(P ) : td(P )] | P ∈ P1}

a rational normal curve of degree d in Pd. Indeed, C̃ is defined to be the image of
the d-th Veronese embedding νd : P1 → Pd of P1. Note that it is well known that
the defining ideal IC̃ is minimally generated by the set {XiXj−Xi−1Xj+1 | 1 ≤
i ≤ j ≤ d − 1} in the sense of Notation and Remarks 2.1.(A). Let Cd ⊂ Pr be
a nondegenerate rational curve of degree d ≥ r. Since the normalization of Cd

is the rational normal curve C̃, Cd can be described as the image of the linear

projection of C̃ ⊂ Pd from a linear subspace Λ ∼= Pd−r−1 of Pd. That is, Cd is
obtained by the parametrization

Cd = {[f0(P ) : f1(P ) : · · · : fr(P )] | P ∈ P1}
where f0, f1, . . . , fr are K-linearly independent forms of degree d in Td. In
particular, we focus our interest to determine a minimal generating set and the
minimal free resolution of the defining ideals of rational curves Cd ⊂ P3 which
are parametrized as

Cd = {[sd(P ) : s2td−2(P ) : std−1(P ) : td(P )] | P ∈ P1} for d ≥ 4. (1)

In [9], the authors studied the possible arithmetic genus of curves which are
contained in a surface of minimal degree. For the curve Cd in (1), the result is

Theorem 1.1 (Theorem 3.3, [9]). Let Cd ⊂ P3 be a rational curve as stated in
(1). Then

(1) Cd is contained in the rational normal surface scroll S(0, 2) as a divisor
linear equivalent to dF where F is a ruling line of S(0, 2).

(2) Cd has the arithmetic genus

g =

{
(k − 1)2 if d = 2k

k(k − 1) if d = 2k + 1

In particular, the genus g of Cd is possibly maximal.

The following is our main theorem in this paper:

Theorem 1.2. Let Cd ⊂ P3 be a rational curve as stated in (1). Then,

(1) The minimal free resolution of Cd is of the form

0 −→ R(−k − 2) −→ R(−2)⊕R(−k) −→ ICd
−→ 0 if d = 2k,

0 −→ R(−k − 2)2 −→ R(−2)⊕R(−k − 1)2 −→ ICd
−→ 0 if d = 2k + 1.

(2) The defining ideal ICd
of Cd is minimally generated as follows:

ICd
= ⟨X1X3 −X2

2 , Xk
1 −X0X

k−1
3 ⟩ if d = 2k,

ICd
= ⟨X1X3 −X2

2 , Xk+1
1 −X0X2X

k−1
3 , Xk

1X2 −X0X
k
3 ⟩ if d = 2k + 1.

Proof. See Theorem 2.3 and Theorem 2.5. □
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2. Main Theorem

Keeping the notation in the previous section, we provide a complete de-
scription of equations which generate the defining ideals of rational curves in
Theorem 1.2 and the syzygies among them.

Notation and Remarks 2.1. (A) For a nondegenerate projective variety X ⊂
Pr, let

M = {Fi,j ∈ K[X0, X1, . . . , Xr] | Fi,j ∈ IX for 2 ≤ i ≤ m and 1 ≤ j ≤ ℓi}

be the set of homogeneous polynomials Fi,j of degree i in the homogeneous
coordinate ring R = K[X0, X1, . . . , Xr]. Then we call M a minimal set of
generators of IX if the following three conditions hold:

(i) IX is generated by the polynomials in M (i.e., IX = ⟨M⟩).

(ii) Fi,1, Fi,2, . . . , Fi,ℓi are K-linearly independent forms of degree i for each
2 ≤ i ≤ m.

(iii) Fi,j /∈ ⟨(IX)≤i−1, Fi,1, . . . , Fi,j−1⟩ for each 2 ≤ i ≤ m and 1 ≤ j ≤ ℓi
where (IX)≤t is the set of all homogeneous polynomials in IX which
degree do not exceed t.

(B) For the vector bundle

E = OP1 ⊕OP1(2)

on P1, the tautological line bundle OP(E)(1) on P(E) defines the birational

morphism ϕ : P(E) → P3 and its image is the rational normal surface scroll
S := S(0, 2) ⊂ P3 of degree 2. Then it is well known that Pic

(
P(E)

)
is

freely generated by the hyperplane class [H̃] := [OP(E)(1)] and the class of

fibre [F̃ ] := [π∗OP1(1)] of the projection π : P(E) → P1. Note that the divisor

class group of S(0, 2) is freely generated by F which is the image of F̃ via ϕ.
The rational normal surface scroll S := S(0, 2) can be described as

S = {[0 : s2 : st : t2] | (s, t) ∈ K2 \ (0, 0)} ⊂ P3

and the defining ideal IS of S is generated by X1X3 −X2
2 .

Let Cd ⊂ P3 be a nondegenerate projective curve parameterized as (1). Then
Cd is contained in the singular rational normal surface scroll S(0, 2) by Theorem
1.1.(1) and hence it is always arithmetically Cohen-Macaulay (see [5, Example
5.2]). This follows that the minimal free resolution of Cd is same with its general
hyperplane section. The following lemma will play a crucial role to understand
the graded Betti numbers of Cd.

Lemma 2.2. Let Γ ⊂ Pn be a finite subscheme of length |Γ| ≥ n+ 1. Suppose
that Γ lies on a rational normal curve D ⊂ Pn. Then it can be written as
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|Γ| = tn + 1 − p for some integer t and 0 ≤ p ≤ n − 1, and the minimal free
resolution of Γ is as follows:

0 −→ Fn −→ · · · −→ F2 −→ F1 −→ IΓ −→ 0

where Fi = R(−1− i)αi ⊕R(−t+ 1− i)βi ⊕R(−t− i)γi for i = 1, . . . , n and

αi = i
(

n
i+1

)
for 1 ≤ i ≤ n

βi =

{
(p+ 1− i)

(
n

i−1

)
for 1 ≤ i ≤ p

0 for p+ 1 ≤ i ≤ n

γi =

{
0 for 1 ≤ i ≤ p

(i− p)
(
n
i

)
for p+ 1 ≤ i ≤ n

Proof. We refer the reader to see [11, Proposition 2.2] and [12, Proposition
2.3]. □

Theorem 2.3. Let Cd ⊂ P3, d ≥ 4 be a curve stated as in (1). Then the
minimal free resolution of Cd is of the form

0 −→ R(−k − 2) −→ R(−2)⊕R(−k) −→ ICd
−→ 0 if d = 2k and

0 −→ R(−k − 2)2 −→ R(−2)⊕R(−k − 1)2 −→ ICd
−→ 0 if d = 2k + 1.

Proof. Let Γ and D be respectively general hyperplane sections of Cd and
S(0, 2). Since Cd is arithmetically Cohen-Macaulay, the minimal free resolu-
tion of Cd is same with that of Γ. On the other hand, the curve D is a rational
normal curve of degree 2 in P2 and hence the minimal free resolution of Γ on D
is obtained from Lemma 2.2. Indeed, we consider the two cases for d = |Γ| = 2k
and d = |Γ| = 2k + 1 for k ≥ 2. Then it holds that t = k and p = 1 if d = 2k,
and t = k and p = 0 if d = 2k + 1 by applying Lemma 2.2. Thus we obtain the
following graded Betti numbers:{

α1 = 1, β1 = 1, γ1 = 0

α2 = 0, β2 = 0, γ2 = 1
if d = 2k and{

α1 = 1, β1 = 0, γ1 = 2

α2 = 0, β2 = 0, γ2 = 2
if d = 2k + 1

This completes the proof. □

Now we describe a set of minimal generators of the defining ideal ICd
of Cd.

First we begin with some simple examples.

Example 2.4. For d = 4, 5, 6, 7, 8, 9, 10, let Cd ⊂ P3 be curves defined as the
parametrization (1). Then by means of the Computer Algebra System Singular
[7], ICd

are respectively minimally generated as follows:

(i) IC4
= ⟨X2

2 −X1X3, X
2
1 −X0X3⟩,

(i) IC5 = ⟨X2
2 −X1X3, X

3
1 −X0X2X3, X

2
1X2 −X0X

2
3 ⟩,
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(i) IC6 = ⟨X2
2 −X1X3, X

3
1 −X0X

2
3 ⟩,

(i) IC7
= ⟨X2

2 −X1X3, X
4
1 −X0X2X

2
3 , X

3
1X2 −X0X

3
3 ⟩,

(i) IC8 = ⟨X2
2 −X1X3, X

4
1 −X0X

3
3 ⟩,

(ii) IC9
= ⟨X2

2 −X1X3, X
5
1 −X0X2X

3
3 , X

4
1X2 −X0X

4
3 ⟩,

(iii) IC10
= ⟨X2

2 −X1X3, X
5
1 −X0X

4
3 ⟩,

This example enables us to pose the theorem:

Theorem 2.5. Let Cd ⊂ P3, d ≥ 4 be a curve stated as in (1). Then ICd
is

minimally generated as follows: For k ≥ 2,

ICd
= ⟨X1X3 −X2

2 , Xk
1 −X0X

k−1
3 ⟩ if d = 2k and

ICd
= ⟨X1X3 −X2

2 , Xk+1
1 −X0X2X

k−1
3 , Xk

1X2 −X0X
k
3 ⟩ if d = 2k + 1.

Proof. First we denote by M2k and M2k+1 respectively the sets

M2k = {X1X3 −X2
2 , Xk

1 −X0X
k−1
3 } and

M2k+1 = {X1X3 −X2
2 , Xk+1

1 −X0X2X
k−1
3 , Xk

1X2 −X0X
k
3 }.

And we also denote by IMd
:= ⟨Md⟩ the ideals generated by the set Md for

d = 2k and d = 2k + 1. Then it is easy to see that the equations in Md vanish
on Cd in (1) for each case. That is, IMd

⊆ ICd
. Now we will show that the

sets M2k and M2k+1 are minimal generating sets of ideals IMd
for d = 2k and

d = 2k + 1, respectively. Then we conclude that the equality IMd
= ICd

holds
by Theorem 2.3. In particular, this follows that ICd

is minimally generated by
the set Md for each case. To this aim, it suffices to show that Md and IMd

for
d = 2k and d = 2k + 1 satisfy two conditions (ii) and (iii) in Notations and
Remarks 2.1. Thus we show the following statements:

(a) When d = 2k, Xk
1 −X0X

k−1
3 /∈ ⟨X1X3 −X2

2 ⟩.

(b) When d = 2k + 1,

(b.1) Xk+1
1 −X0X2X

k−1
3 and Xk

1X2−X0X
k
3 are K-linearly independent,

(b.2) Xk+1
1 −X0X2X

k−1
3 /∈ ⟨X1X3 −X2

2 ⟩, and

(b.3) Xk
1X2 −X0X

k
3 /∈ ⟨X1X3 −X2

2 , X
k+1
1 −X0X2X

k−1
3 ⟩.

To verify (a), suppose that

Xk
1 −X0X

k−1
3 = Fk−2(X1X3 −X2

2 ) (2)

where Fk−2 ∈ K[X0, X1, X2, X3] is a homogeneous polynomial of degree k − 2.
Then the equality in (2) fails to satisfy at the point p = [0, 1, 0, 0] ∈ P3. Suppose
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that d = 2k + 1. Then it is obviously that two polynomial Xk+1
1 −X0X2X

k−1
3

and Xk
1X2 − X0X

k
3 are K-linearly independent as the exclusive monomials of

each polynomial. This proves (b.1). To verify (b.2), suppose that

Xk+1
1 −X0X2X

k−1
3 = Gk−1(X1X3 −X2

2 ) (3)

where Gk−1 ∈ K[X0, X1, X2, X3] is a homogeneous polynomial of degree k − 1.
Then it is easy to see that the point p = [0, 1, 0, 0] ∈ P3 gives a failure for the
equality in (3). This proves (b.2). Finally, suppose that

Xk
1X2 −X0X

k
3 = Hk−1(X1X3 −X2

2 ) + b(Xk+1
1 −X0X2X

k−1
3 ) (4)

where Hk−1 ∈ K[X0, X1, X2, X3] is a homogeneous polynomial of degree k − 1
and b is a constant. In particular, we may assume that b is nonzero. Otherwise,
the equality fails to satisfy at the point p = [0, 1, 1, 1] ∈ P3. We also observe
that the equality (4) is represented as 0 = b on the point [0, 1, 0, 0] ∈ P3 which
can not happen. This completes the proof of statements in (b).

□
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