DOI QR코드

DOI QR Code

Two-dimensional concrete meso-modeling research based on pixel matrix and skeleton theory

  • Jingwei Ying (College of Civil Engineering and Architecture, Guangxi University) ;
  • Yujun Jian (College of Civil Engineering and Architecture, Guangxi University) ;
  • Jianzhuang Xiao (Institute of Science and Technology for Carbon Peak & Neutrality, Guangxi University)
  • 투고 : 2022.07.05
  • 심사 : 2023.11.06
  • 발행 : 2024.06.25

초록

The modeling efficiency of concrete meso-models close to real concrete is one of the important issues that limit the accuracy of mechanical simulation. In order to improve the modeling efficiency and the closeness of the numerical aggregate shape to the real aggregate, this paper proposes a method for generating a two-dimensional concrete meso-model based on pixel matrix and skeleton theory. First, initial concrete model (a container for placing aggregate) is generated using pixel matrix. Then, the skeleton curve of the residual space that is the model after excluding the existing aggregate is obtained using a thinning algorithm. Finally, the final model is obtained by placing the aggregate according to the curve branching points. Compared with the traditional Monte Carlo placement method, the proposed method greatly reduces the number of overlaps between aggregates by up to 95%, and the placement efficiency does not significantly decrease with increasing aggregate content. The model developed is close to the actual concrete experiments in terms of aggregate gradation, aspect ratio, asymmetry, concavity and convexity, and old-new mortar ratio, cracking form, and stress-strain curve. In addition, the cracking loss process of concrete under uniaxial compression was explained at the mesoscale.

키워드

과제정보

The research described in this paper was financially supported by the Natural Science Foundation of China (Grant No. 52168015, No. 51768005), Natural Science Foundation of Guangxi (Grant No. 2018GXNSFAA281333), Interdisciplinary Scientific Research Foundation of Guangxi University (Grant No. 202200227).

참고문헌

  1. Abdelmoumen, S., Bellenger, E., Lynge, B. and Queneudect'Kint, M. (2010), "Finite element analysis of elastic property of concrete composites with ITZ", Comput. Concrete, 7(6), 497-510. https://doi.org/10.12989/cac.2010.7.6.497.
  2. Akcay, B., Agar-Ozbek, A.S., Bayramoy, F., Atahan, H.N., Sengul, C. and Tasdemir, M.A. (2012), "Interpretation of aggregate volume fraction effects on fracture behavior of concrete", Constr. Build. Mater., 28(1), 437-443. https://doi.org/10.1016/j.conbuildmat.2011.08.080.
  3. Bazant, Z.P., Tabbara, M.R., Kazemi, M.T. and Pijaudier-Cabot, G. (1990), "Random particle model for fracture of aggregate or fiber composites", J. Eng. Mech., 116(8), 1686-1705. https://doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686).
  4. Benzeggagh, M.L. and Kenane, M. (1996), "Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus", Compos. Sci. Technol., 56(4), 439-449. https://doi.org/10.1016/0266-3538(96)00005-X.
  5. Blum, H. (1973), "Biological shape and visual science I", J. Theoret. Biol., 38(2), 205-287. https://doi.org/10.1016/0022-5193(73)90175-6.
  6. Cao, P., Li, G.D., Yu, J.J., Zhang, M., Jin, F. and Zhao, Z.M. (2019), "Research and application of random aggregate model in determining the fracture behavior of four-point bending beam with notch", Constr. Build. Mater., 202, 276-289. https://doi.org/10.1016/j.conbuildmat.2018.12.195.
  7. Chiaia, B., Vervuurt, A. and Mier, J. (1997), "Lattice model evaluation of progressive failure in disordered particle composites", Eng. Fract. Mech., 57(2-3), 301-318. https://doi.org/10.1016/S0013-7944(97)00011-8.
  8. Dey, T.K. and Zhao, W. (2004), "Approximate medial axis as a Voronoi subcomplex", Comput. Aid. Des., 36(2), 195-202. https://doi.org/10.1016/S0010-4485(03)00061-7.
  9. Ding, J.J. and Lee, P.X. (2015), "Fast morphology algorithm with parallel processing structures", 2014 International Conference on Audio, Language and Image Processing, Shanghai, China, July.
  10. Du, Y., Wang, X. and Liu, H. (2005), "Character differentiating between voronoi diagram and medial axis of polygon", Comput. Technol. Automat., 41(27), 45-46.
  11. Euler, A., Martini, K., Baessler, B., Eberhard, M., Schoeck, F., Alkadhi, H. and Frauenfelder, T. (2020), "1024-pixel image matrix for chest CT - Impact on image quality of bronchial structures in phantoms and patients", PLOS ONE, 15(6), e0234644. https://doi.org/10.1371/journal.pone.0234644.
  12. Gao, Z.G. and Liu, G.T. (2003) "Two-dimensional random aggregate structure for concrete", J. Tsinghua Univ.: Nat. Sci. Edit., 43(5), 5.
  13. Guo, R.Q., Xiao, Y.X. and Tang X.Q. (2017), "A fast hybrid realization method for three-dimensional concrete aggregate models", Civil Arch. Env. Eng., 39(5), 8. https://doi.org/10.11835/j.issn.1674-4764.2017.05.014.
  14. Galindo-Torres, S.A., Pedroso, D.M., Williams, D.J. and Li, L. (2012), "Breaking processes in three-dimensional bonded granular materials with general shapes", Comput. Phys. Commun., 183(2), 266-277. https://doi.org/10.1016/j.cpc.2011.10.001.
  15. Huang, Y.J., Yang, Z.J., Ren, W.Y., Liu, G.H. and Zhang, C.Z. (2015), "3D meso-scale fracture modelling and validation of concrete based on in-situ X-ray computed tomography images using damage plasticity model", Int. J. Solid. Struct., 67-68, 340-352. https://doi.org/10.1016/j.ijsolstr.2015.05.002.
  16. Jiang, Z.L., Gu, X.L., Huang, Q.H. and Zhang, W.P. (2019), "Statistical analysis of concrete carbonation depths considering different coarse aggregate shapes", Constr. Build. Mater., 229, 116856. https://doi.org/10.1016/j.conbuildmat.2019.116856.
  17. Jin, H., Zhou, Y., Wang, B. and Zhou, S. (2018), "Mesoscopic finite element modeling of concrete considering geometric boundaries of actual aggregates", Adv. Mater. Sci. Eng., 2018, 1-10. https://doi.org/10.1155/2018/7816502.
  18. Jingwei, Y. and Jin, G. (2021), "Fracture behaviour of real coarse aggregate distributed concrete under uniaxial compressive load based on cohesive zone model", Mater., 14(15), 4314. https://doi.org/10.3390/ma14154314.
  19. Kaveh, A. (1995), Structural Mechanics: Graph and Matrix Methods, 3rd Edition, Research Studies Press, Hertfordshire, Herts, UK.
  20. Kaveh, A. (2006), Optimal Structural Analysis, 2nd Edition, Research Studies Press, Hertfordshire, Herts, UK.
  21. Kaveh, A. (2013), Optimal Analysis of Structures by Concepts of Symmetry and Regularity, Springer Verlag, Berlin, Heidelberg, Germany.
  22. Kim, Y.R., de Freitas, F.A.C., Jung, J.S. and Sim, Y. (2015), "Characterization of bitumen fracture using tensile tests incorporated with viscoelastic cohesive zone model", Constr. Build. Mater., 88, 1-9. https://doi.org/10.1016/j.conbuildmat.2015.04.002.
  23. Lam, L., Lee, S.W. and Suen, C.Y. (1992), "Thinning methodologies-A comprehensive survey", IEEE Trans. Pattern Anal. Mach. Intell., 14(9), 869-885. https://doi.org/10.1109/34.161346.
  24. Lin, L., Shen, D., Chen, H. and Xu, W. (2014), "Aggregate shape effect on the diffusivity of mortar: A 3D numerical investigation by random packing models of ellipsoidal particles and of convex polyhedral particles", Comput. Struct., 144, 40-51. https://doi.org/10.1016/j.compstruc.2014.07.022.
  25. Ma, H., Xu, W. and Li, Y. (2016), "Random aggregate model for mesoscopic structures and mechanical analysis of fully-graded concrete", Comput. Struct., 177, 103-113. https://doi.org/10.1016/j.compstruc.2016.09.005.
  26. Li, X.J. (2016), "The study on the oval equation", J. Graph., 37(4), 4. https://doi.org/CNKI:SUN:GCTX.0.2016-04-004.
  27. Malachanne, E., Jebli, M., Jamin, F., Garcia-Diaz, E. and El Youssoufi, M.S. (2018), "A cohesive zone model for the characterization of adhesion between cement paste and aggregates", Constr. Build. Mater., 193, 64-71. https://doi.org/10.1016/j.conbuildmat.2018.10.188.
  28. Mehta, P.K. and Monteiro, P. (2013), "Concrete : Microstructure, properties, and materials", Prentice Hall, Englewood Cliffs, NJ, USA.
  29. Mohamed, A.R. and Hansen, W. (1999), "Micromechanical modeling of concrete response under static loading-Part 1: Model development and validation", ACI Mater. J., 96(2), 196-203. https://doi.org/10.14359/445.
  30. Ouyang, H. and Chen, X. (2020), "3D meso-scale modeling of concrete with a local background grid method", Constr. Build. Mater., 257(2), 119382. https://doi.org/10.1016/j.conbuildmat.2020.119382.
  31. Qing, C., Guo, C.Q. and Zhang, C. (2011), "A pre-processing scheme based on background grid approach for meso-concrete mechanics", J. Hydraul. Eng., 42(8), 8. https://doi.org/10.1631/jzus.B1000185.
  32. Ren, W., Yang, Z., Sharma, R., Zhang, C. and Withers, P.J. (2015), "Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete", Eng. Fract. Mech., 133, 24-39. https://doi.org/10.1016/j.engfracmech.2014.10.016.
  33. Roelfstra, P.E., Sadouki, H. and Wittmann, F.H. (1985), "Le beton numerique", Mater. Struct., 18(5), 327-335. https://doi.org/10.1007/bf02472402.
  34. Schlangen, E. and Mier, J. (1992a), "Experimental and numerical analysis of micromechanisms of fracture of cement-based composites", Cement Concrete Compos., 14(2), 105-118. https://doi.org/10.1016/0958-9465(92)90004-F.
  35. Schlangen, E. and Mier, J. (1992b), "Simple lattice model for numerical simulation of fracture of concrete materials and structures", Mater. Struct., 25(9), 534-542.
  36. Sun, Y.R., Wei, X., Gong, H.R., Du, C., Wang, W.Y. and Chen, J.Y. (2020), "A two-dimensional random aggregate structure generation method: Determining effective thermo-mechanical properties of asphalt concrete", Mech. Mater., 148, 103510. https://doi.org/10.1016/j.mechmat.2020.103510.
  37. Sun, Y.R., Zhang, Z., Wei, X., Du, C., Gong, M.Y., Chen, J.Y. and Gong, H.R. (2021), "Mesomechanical prediction of viscoelastic behavior of asphalt concrete considering effect of aggregate shape", Constr. Build. Mater., 274, 122096. https://doi.org/10.1016/j.conbuildmat.2020.122096.
  38. Tam, T. and Armstrong, C.G. (1991), "2D finite element mesh generation by medial axis subdivision", Adv. Eng. Softw. Workstat., 13(5-6), 313-324. https://doi.org/10.1016/0961-3552(91)90035-3.
  39. Thilakarathna, P.S.M., Kristombu Baduge, K.S., Mendis, P., Vimonsatit, V. and Lee, H. (2020), "Mesoscale modelling of concrete - A review of geometry generation, placing algorithms, constitutive relations and applications", Eng. Fract. Mech., 231, 106974. https://doi.org/10.1016/j.engfracmech.2020.106974.
  40. Tang, X.W. and Zhang, C.H. (2008), "Layering disposition and FE coordinate generation for random aggregate arrangements", J. Tsinghua Univ.: Nat. Sci. Edit., 48(12), 5.
  41. Van Mier, J. (1997), Fracture Processes of Concrete: Assessment of Material Parameters for Fracture Models, CRC Press, Boca Raton, FL, USA.
  42. Walraven, J.C. (1980), "Aggregate interlock: A theoretical and experimental analysis", Civil Eng. Geosci., https://doi.org/10.1016/0003-2697(92)90316-Y.
  43. Walraven, J.C. (1981), "Fundamental analysis of aggregate interlock", J. Struct. Div., 107(11), 2245-2270. https://doi.org/10.2514/3.56113.
  44. Wang, L.X., Chen, Q.D., Liu, X., Zhang, B. and Shen, Y.C. (2020), "Research on damage of 3D random aggregate concrete model under ultrasonic dynamic loading", Comput. Concrete, 26(1), 11-20. https://doi.org/10.12989/cac.2020.26.1.011.
  45. Wang, Z.M., Kwan, A. and Chan, H.C. (1999), "Mesoscopic study of concrete I: Generation of random aggregate structure and finite element mesh", Comput. Struct., 70(5), 533-544. https://doi.org/10.1016/S0045-7949(98)00177-1.
  46. Wittmann, F.H., Roelfstra, P.E. and Sadouki, H.J.M.S. (1985), "Simulation and analysis of composite structures", Mater. Sci. Eng., 68(2), 239-248. https://doi.org/10.1016/0025-5416(85)90413-6.
  47. Xiao, J., Li, W., Sun, Z. and Shah, S. (2012), "Crack propagation in recycled aggregate concrete under uniaxial compressive loading", ACI Mater. J., 109, 451-461.
  48. Xu, W. and Chen, H. (2012), "Mesostructural characterization of particulate composites via a contact detection algorithm of ellipsoidal particles", Powd. Technol., 221, 296-305. https://doi.org/10.1016/j.powtec.2012.01.016.
  49. Xu, W., Chen, H., Wen, C. and Jiang, L. (2013), "Prediction of transport behaviors of particulate composites considering microstructures of soft interfacial layers around ellipsoidal aggregate particles", Soft Matt., 10(4), 627-638. https://doi.org/10.1039/c3sm52718b.
  50. Xu, W.X., Ma, H.F., Ji, S.Y. and Chen, H.S. (2016), "Analytical effective elastic properties of particulate composites with soft interfaces around anisotropic particles", Compos. Sci. Technol., 129, 10-18. https://doi.org/10.1016/j.compscitech.2016.04.011.
  51. Xu, Y., Shuo, M. and Dai, H.Z. (2020), "Effect of geometric form of concrete meso-structure on its mechanical behavior under axial tension", Constr. Build. Mater., 255, 119295. https://doi.org/10.1016/j.conbuildmat.2020.119295.
  52. Xiong, X.Y. and Xiao, Q.S. (2019), "A unified meso-scale simulation method for concrete under both tension and compression based on cohesive zone model", J. Hydraul. Eng., 50(4), 448-462. https://doi.org/10.13243/j.cnki.slxb.20181061.
  53. Yi, X. and Chen, S. (2016), "A method for modeling the damage behavior of concrete with a three-phase mesostructure", Constr. Build. Mater., 102, 26-38. https://doi.org/10.1016/j.conbuildmat.2015.10.151.
  54. Zaitsev, Y.B. and Wittmann, F.H. (1981), "Simulation of crack propagation and failure of concrete", Mater. Struct., 14(5), 357-365. https://doi.org/10.1007/BF02478729.
  55. Zhang, J., Wang, Z., Yang, H., Wang, Z. and Shu, X. (2018a), "3D meso-scale modeling of reinforcement concrete with high volume fraction of randomly distributed aggregates", Constr. Build. Mater., 164, 350-361. https://doi.org/10.1016/j.conbuildmat.2017.12.229.
  56. Zhang, J., Wang, Z.Y., Yang, H.W., Wang, Z.H. and Shu, X.F. (2018b), "3D meso-scale modeling of reinforcement concrete with high volume fraction of randomly distributed aggregates", Constr. Build. Mater., 164, 350-361. https://doi.org/10.1016/j.conbuildmat.2017.12.229.
  57. Zhang, Z., Song, X., Liu, Y., Wu, D. and Song, C. (2017), "Threedimensional mesoscale modelling of concrete composites by using random walking algorithm", Compos. Sci. Technol., 149, 235-245. https://doi.org/10.1016/j.compscitech.2017.06.015.
  58. Zhou, R., Song, Z. and Lu, Y. (2017), "3D mesoscale finite element modelling of concrete", Comput. Struct., 192, 96-113. https://doi.org/10.1016/j.compstruc.2017.07.009.
  59. Zhu, L., Dang, F.N., Xue, Y., Ding, W.H. and Zhang, L. (2020), "Comparative study on the meso-scale damage evolution of concrete under static and dynamic tensile loading using X-ray computed tomography and digital image analysis", Constr. Build. Mater., 250, 118848. https://doi.org/10.1016/j.conbuildmat.2020.118848.