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SOME GEOMETRIC PROPERTIES OF GOTZMANN

COEFFICIENTS

Jeaman Ahn*

Abstract. In this paper, we study how the Hilbert polynomial,
associated with a reduced closed subscheme X of codimension 2 in
PN , reveals geometric information about X. Although it is known
that the Hilbert polynomial can tell us about the scheme’s degree
and arithmetic genus, we find additional geometric information it
can provide for smooth varieties of codimension 2. To do this, we
introduce the concept of Gotzmann coefficients, which helps to ex-
tract more information from the Hilbert polynomial. These coeffi-
cients are based on the binomial expansion of values of the Hilbert
function. Our method involves combining techniques from initial
ideals and partial elimination ideals in a novel way. We show how
these coefficients can determine the degree of certain geometric fea-
tures, such as the singular locus appearing in a generic projection,
for smooth varieties of codimension 2.

1. Introduction

Let X be an closed subscheme in PN with its defining ideal IX in the
homogeneous coordinate ring R = k[x0, . . . , xN ] of PN , where k is the
algebraically closed field of characteristic 0. Since X is the intersection
of several hypersurfaces, we ask how many linearly independent hyper-
surfaces of degree n cut out X. This boils down to calculating the vector
space dimension of (IX)n, which also means finding the dimension as a
k-vector space at degree n in the homogeneous coordinate ring R/IX .
The Hilbert function of X, which is denoted by HX and also referred to
as HR/IX , is the numerical function defined as

HX(n) = dimk(R/IX)n.
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In his seminal paper [14], Hilbert proved that R/IX always has the
minimal free resolution of finite length. This foundational result allows
us to write the Hilbert function HX(n) as a polynomial PX(n) in terms
of n for sufficiently large values of n. This polynomial PX(n) is referred
to as the Hilbert polynomial of X.

Exploring the geometric information encoded in the Hilbert function
or Hilbert polynomial is an intriguing topic, and numerous studies from
various perspectives have been conducted in this regard. In this paper,
we will focus on the growth of the Hilbert function to achieve our main
result (see Theorem 3.3). A foundational result concerning the growth
of the Hilbert function was provided by Macaulay in [8, 15, 18], who
explored the growth of the Hilbert function for lex-segment ideals and
gave an upper bound in terms of the binomial expansion of its values.
Subsequent researchers have interpreted the extremal behavior of the
Hilbert function geometrically. That is, their efforts have been made
to explain the geometric properties of the linear system given by the
ideal component at a specific degree when maximal growth is achieved
[1, 2, 3, 4, 7, 9, 10, 11, 17].

In this context, our paper investigates the geometric information con-
veyed by the maximal growth of the Hilbert polynomial. We express the
Hilbert polynomial as a sum of binomials using Gotzmann Regular-
ity Theorem [12] and introduce the concept of Gotzmann coefficients.
Additionally, by using Gröbner bases theory in generic coordinates, we
show that for a smooth projective variety X of codimension 2 in PN ,
the Hilbert polynomial discloses details about the degree of the singular
locus of the image under generic projections.

2. Gotzmann coefficients of Hilbert polynomials

To explain the main result of this paper, it is necessary to introduce
some basic definitions and notations. We begin by defining the binomial
expansion of natural numbers.

Definition 2.1. Let n > 0 and c > 0 be positive integers. The n-th
binomial expansion of c is the unique expression

c =

(
kn
n

)
+

(
kn−1

n− 1

)
+ · · ·+

(
kδ
δ

)
,

where kn > kn−1 > · · · > kδ ≥ δ > 0. We introduce the notation:

c⟨n⟩ =

(
kn + 1

n+ 1

)
+

(
kn−1 + 1

n

)
+ · · ·+

(
kδ + 1

δ + 1

)
.
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Macaulay showed the following result concerning the growth of the
Hilbert function.

Theorem 2.2 (Macaulay’s Theorem). A numerical functionH : N →
N is the Hilbert function of some homogeneous ideal I ⊂ R if and only
if

HR/I(n+ 1) ≤ HR/I(n)
<n> for all n > 0.

This result includes combinatorial aspects, and for a survey of some
related results, see [8, 15, 18]. Theorem 2.2 informs us what the maximal
growth of the Hilbert function is. For a given algebraic scheme X, results
on the geometric characteristics of the linear system of hypersurfaces of
degree n defined by (IX)n when the Hilbert function achieves maximal
growth at a certain degree n can be found in [1, 2, 3, 4].

Every Hilbert function will always achieve maximal growth after a
sufficiently large degree. This fact was shown by Gotzmann. He was
interested in knowing the bounds of regularity for homogeneous ideals
with a given Hilbert function, and he showed that the degree at which
maximal growth begins and persists after it provides that bound. In
[12], he used this theorem as a tool to construct the Hilbert scheme for
a given Hilbert function.

Theorem 2.3 (Gotzmann’s Regularity Theorem). Let X be a closed
subscheme in PN . Then there exist positive numbers as ≥ as−1 ≥ · · · ≥
a1 ≥ 0 such that Hilbert polynomial of X is of the form:
(2.1)

PX(n) =

(
as + n

n

)
+

(
as−1 + (n− 1)

n− 1

)
+ · · ·+

(
a1 + (n− s+ 1)

n− s+ 1

)
.

Furthermore, IX is s-regular.

The number of the binomial summands in (2.1) is said to be Gotz-
mann number of X. According to Gotzmann’s regularity theorem, the
Hilbert function of a closed subscheme X in PN achieves the upper
bound given by Macaulay’s Theorem at large degrees. The Gotzmann
number, denoted by G(X) or G(R/IX), is defined as the smallest degree
where the Hilbert function stabilizes and satisfies Macaulay’s bound for
all higher degrees. This is given by:

(2.2) G(R/IX) = min{d | HX(k + 1) = HX(k)⟨k⟩ for all k ≥ d}.
For a saturated ideal IX , it is known that G(R/IX) = s in Theorem 2.3,
and generally, for non-saturated homogeneous ideal I, G(R/I) is greater
than or equal to s [1, Theorem 2.14].
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We introduce the definition of i-th Gotzmann coefficients, which is
necessary for explaining the main result of this paper ([1] ). Let X be a
closed subscheme in PN . We define the Gotzmann coefficients of X, de-
noted Ci(X), as follows: with the notations in Theorem 2.3, the number
of ak which is equal to i as

(2.3) Ci(X) = |{k | ak = i}|
for all i ≥ 0. These coefficients are uniquely determined for X and
provide a decomposition of the Gotzmann number G(X) into a sum:

(2.4) G(X) = Cr(X) + Cr−1(X) + · · ·+ C1(X) + C0(X).

We remark that Ci(X), the i-th Gotzmann coefficient, is determined by
the Hilbert polynomial of X and allows us to reconstruct it. Since the
degree of the Hilbert polynomial is equal to the dimension of X, we have
r = dim(X), and by comparing the coefficients of the leading term, note
that Cr(X) is equal to deg(X).

Example 2.4. LetX be a hypersurface in PN defined by a polynomial
F of degree d. From the following exact sequence

0 → R(−d)
×F→ R → R/IX → 0

the Hilbert polynomial of X is given by

HX(n) =

(
N + n

n

)
−
(
N + n− d

n− d

)
=

(
(N − 1) + n

n

)
+

(
(N − 1) + n− 1

n− 1

)
+ · · ·+

(
(N − 1) + n− d+ 1

n− d+ 1

)
.

Hence, we have (CN−1(X), CN−2(X), · · · , C0(X)) = (deg(X), 0, · · · , 0).
Example 2.5. Let X be a smooth integral curve of degree d and

genus g in P3. Then we know that the Hilbert polynomial of X is

PX(n) = dn+ 1− g

=

(
n+ 1

n

)
+ · · ·+

(
n− d+ 2

n− d+ 1

)
+

(
n− d

n− d

)
+ · · ·+ · · ·+

(
n− δ

n− δ

)
,

where δ = d+
(
d−1
2

)
− g − 1. Hence we have

(C1(X), C0(X)) =

(
deg(X),

(
d− 1

2

)
− g

)
Note that Gotzmann coefficients contain some geometric information of
X. In particular, C0(X) is exactly the same as the number of nodal
points of π(X), where π : X → P2 is a generic projection of X to the
plane.
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Example 2.6. LetX be a sufficiently general complete intersection of
(2, 2)-type in P4. Using Koszul complex, we obtain PX(n) = 2n2+2n+1,
which can be written by(
n+ 2

n

)
+ · · ·+

(
n− 1

n− 3

)
+

(
n− 3

n− 4

)
+

(
n− 4

n− 5

)
+

(
n− 6

n− 6

)
+ · · ·+

(
n− 15

n− 15

)
.

Hence we have

(C2(X), C1(X), C0(X)) = (4, 2, 6).

Note that C2(X) = deg(X). What can we say about C1(X)? If we con-
sider a generic projection π: X → P3, then, calling the singular locus
X1 of π(X) , its defining ideal IX1 can be computed using the subre-
sultant of the Sylvester matrix [5, Theorem 3.6]. Calculating this with
Macaulay2 [16] reveals that X1 is a plane conic, hence deg(X1) = 2,
which is exactly equal to C1(X).

Generally, Gotzmann coefficients can become very large. The follow-
ing example illustrates this for us:

Example 2.7. Let X be the secant variety of the rational normal
curve C in P5. We can also consider the generic projection π(X) of X
onto a hyperplane, where we find the degree of the singular locus X1 in
π(X) to be 7.

Meanwhile, using the Eagon-Northcott complex, we obtain the Hilbert
series of X:

HX(t) =
1 + 2t+ 3t2

(1− t)4
.

Therefore, the Hilbert polynomial of X is

PX(n) =6

(
n+ 3

3

)
− 8

(
n+ 2

2

)
+ 3

(
n+ 1

1

)
.

Then we have

(C3(X), C2(X), C1(X), C0(X)) = (6, 7, 46, 1382)

Note that deg(X) = C3(X) and deg(X1) = C2(X).

3. Main results

We may expect that the Gotzmann coefficients of X ⊂ PN contain
some information on a generic projection of X to PN−1, as seen in Ex-
amples 2.5, 2.6 and 2.7.

In this section, for a non-degenerate, smooth variety X ⊂ PN of codi-
mension 2, we show that such information regarding the projection from
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a general point in PN can be obtained from the Gotzmann coefficients
of X using the lexicographic generic initial ideal of IX (Theorem 3.3).

In what follows, we assume only the degree lexicographic order for
monomials in R = k[x0, . . . , xN ]. To state the main result, it is necessary
to introduce the concept of the i-th partial elimination ideal of IX . This
defines the set of points within the projection image, each corresponding
to a fiber whose length exceeds i > 0.

Definition 3.1 ([5, 6]). Let I be a homogeneous ideal in R =
k[x0, . . . , xn]. For any f ∈ I, consider f as a polynomial in the vari-
able x0 and write it in descending order as follows:

f = xi0f̄ + g,

where f̄ ∈ R̄ = k[x1, . . . , xn] and degx0
(g) < i. We then define

Ki(I) = {f̄ ∈ R̄ | f ∈ I, degx0
(f) ≤ i}.

We shall refer to Ki(I) as the i-th partial elimination ideal of I, which
becomes an ideal in R̄ = k[x1, . . . , xn].

Proposition 3.2 ([5, 6]). LetX ⊂ PN be a reduced closed subscheme
and assume that p = [1, 0, . . . , 0] /∈ X. Consider the projection π : X →
PN−1 from the point p ∈ PN to x0 = 0. Then, set theoretically, Ki(IX)
is the ideal of

Xi =
{
q ∈ π(X) | length

(
π−1(q)

)
> i

}
.

From the definition of the partial elimination ideal, we note that
K0(IX) serves as the defining ideal of the projection image π(X), and
in many cases, K1(IX) set-theoretically defines the singular locus X1 of
π(X). For an equi-dimensional reduced scheme X of codimension 2, it
can be shown that K1(IX) is always a saturated ideal[?]. This naturally
prompts us to consider the scheme structure as follows:

Yi = Proj
(
R̄/Ki(IX)

)
, for i ≥ 0

where R̄ = k[x1, . . . , xn] is the polynomial ring obtained by eliminating
the variable x0 from R. It is important to note that Xi = (Yi)red. De-
termining when the closed subscheme Yi becomes a reduced scheme is
an interesting problem, which seems to be deeply connected with the
geometric properties of X.

We are ready to give the following result, which is the main theorem
in this paper.
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Theorem 3.3. Let X be a non-degenerate smooth variety of dimen-
sion r ≥ 1 and codimension 2 in PN , where N = r + 2. Additionally,
let

G(X) = Cr(X) + Cr−1(X) + · · ·+ C1(X) + C0(X)

be the decomposition of G(X) into the sum of Gotzmann coefficients
Ci(X). Consider a projection π : X → Pr+1 from a general point of PN .
Then, we have

(a) deg(Y0) = Cr(X)
(b) deg(Y1) = Cr−1(X).

Proof. By the property of generic projection, the dimension and de-
gree of Y0 = π(X) remain unchanged, which immediately makes (a) ap-
parent by comparing the coefficients of the highest terms in the Hilbert
polynomial. Therefore, we will focus on proving (b).

If X is a smooth curve, then, as shown in Example 2.5, the results (a)
and (b) follows. Note that the scheme Y1 defined by K1(IX) is indeed
reduced, and C1(X) is the same as the number of nodal points on the
plane curve π(X).

Considering that dim(X) ≥ 2 and d = deg(X), and noting that X
is a smooth variety, the General Projection Theorem by Gruson and
Peskine [13, Theorem 1.1] says that

(3.1) dim(Y0) = r, dim(Y1) = r − 1, dim(Y2) = r − 2, · · · .

Each dimension matches the degree of its Hilbert polynomial. Since
K0(IX) defines π(X), the projection image, Y0 is a hypersurface in Pr+1

with dimension r and degree d.

Regarding lexicographical order, IX has the following decomposition:

(3.2) in(IX) =
∞⊕
i=0

xi0
(
in(Ki(IX))

)
.

Furthermore, assuming a generic projection, we see that in(Ki(IX)) =
Gin(Ki(IX)) (Proposition 3.3 in [5]). Meanwhile, the Hilbert function of
IX is the same as that of its initial ideal in(IX), from which we derive
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the following.

HX(n) =

(
N + n

N

)
− dimk(Gin(IX), n)

=
∑
i≥0

[(
N − 1 + n− i

N − 1

)
− dimk(Gin(Ki(IX))), n− i)

]
=
∑
i≥0

HR/Ki(IX)(n− i).

Given that the equation holds for sufficiently large n, we can express the
Hilbert polynomial as follows:

(3.3) PX(n) = PY0(n) + PY1(n− 1) + PY2(n− 2) + · · · .

Now, since Y0 is a hypersurface in Pr+1 with dimension r and degree
d = deg(X), by applying the Hilbert polynomial of Y0 as shown in
Example 2.4, we calculate:

PY1(n) = PX(n+ 1)− PY0(n+ 1)− PY2(n− 1)− · · ·

=

(
(r − 1) + n+ 1− d

n+ 1− d

)
+ · · ·+

(
(r − 1) + n+ 1− d− Cr−1(X) + 1

n+ 1− d− Cr−1(X) + 1

)
︸ ︷︷ ︸

number of binomials is Cr−1(X)

+ (the sum of binomials

(
a

b

)
with a− b < r − 1).

Thus, we can write

PY1(n) =
Cr−1(X)

(r − 1)!
nr−1 + (a polynomial in n of degree < r − 1)

and consequently conclude that deg(Y1) = Cr−1(X).

Remark 3.4. There’s a subtle point in Theorem 3.3 that we need to
consider. Set-theoretically, the singular locus of π(X) isX1, which means
that generally, the Gotzmann coefficient Cr−1(X) is not the degree of
X1, but rather gives its upper bound. It’s important to note that the
equality holds in the following equivalent cases:

(a) K1(IX) =
√
K1(IX), that is, K1(IX) is a reduced ideal.

(b) Cr−1(X) = deg(X1).

Empirically, for varieties familiar to us, it can be calculated that
K1(IX) often becomes a reduced ideal, and thus, in many cases, Cr−1(X)
is equal to deg(X1). It is intriguing to know when K1(IX) becomes iden-
tical to its radical ideal. For example, whether K1(IX) always becomes
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a reduced ideal when X is smooth and undergoes a generic projection
is one of the open problems.

Example 3.5. Let X ⊂ P4 be a generic projection of the Veronese
surface ν2(P2) ⊂ P5. Then, the Hilbert polynomial of X is given by

PX(n) = 2n2 + 3n+ 1.

We find the Gotzmann coefficients to be

(C2(X), C1(X), C0(X)) = (4, 3, 11).

Taking a generic projection of X onto P3, the image becomes a surface
Y0 = X0 ⊂ P3 of degree 4 (known as a Steiner surface). Computing
Y1 with Macaulay2 reveals that it is reduced and consists of three non-
degenerate lines intersecting at a point. Therefore, Y1 defines the singular
locus X1 of X0, and its degree is 3, exactly matching C1(X). Since
PX1(n) = 3n+ 1, we have

PY2(n) = PX(n+ 2)− PX0(n+ 2)− PX1(n+ 1) = 1,

which means Y2 is a finite scheme of degree 1. Hence, K2(IX) is also a
reduced ideal defining the singular locus of X1.
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