DOI QR코드

DOI QR Code

Surface-Engineered Graphene surface-enhanced Raman scattering Platform with Machine-learning Enabled Classification of Mixed Analytes

  • Jae Hee Cho (Thin Film Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Garam Bae (Thin Film Materials Research Center, Korea Research Institute of Chemical Technology) ;
  • Ki-Seok An (Thin Film Materials Research Center, Korea Research Institute of Chemical Technology)
  • Received : 2024.05.02
  • Accepted : 2024.05.22
  • Published : 2024.05.31

Abstract

Surface-enhanced Raman scattering (SERS) enables the detection of various types of π-conjugated biological and chemical molecules owing to its exceptional sensitivity in obtaining unique spectra, offering nondestructive classification capabilities for target analytes. Herein, we demonstrate an innovative strategy that provides significant machine learning (ML)-enabled predictive SERS platforms through surface-engineered graphene via complementary hybridization with Au nanoparticles (NPs). The hybridized Au NPs/graphene SERS platforms showed exceptional sensitivity (10-7 M) due to the collaborative strong correlation between the localized electromagnetic effect and the enhanced chemical bonding reactivity. The chemical and physical properties of the demonstrated SERS platform were systematically investigated using microscopy and spectroscopic analysis. Furthermore, an innovative strategy employing ML is proposed to predict various analytes based on a featured Raman spectral database. Using a customized data-preprocessing algorithm, the feature data for ML were extracted from the Raman peak characteristic information, such as intensity, position, and width, from the SERS spectrum data. Additionally, sophisticated evaluations of various types of ML classification models were conducted using k-fold cross-validation (k = 5), showing 99% prediction accuracy.

Keywords

Acknowledgement

J. H. C., and G. B. contributed equally to this study. This work was supported by the Technology Innovation Program (or Industrial Strategic Technology Program) funded by the Ministry of Trade, Industry, and Energy (20013138).

References

  1. M. Moskovits, "Suface-enhanced Raman spectroscopy: a brief retrospective", J. Raman. Spectrosc., Vol. 36, No. 6-7, pp. 485-496, 2005.
  2. R. Petry, M. Schmitt, and J. Popp, "Raman Spectroscopy-A Prospective Tool in the Life Sciences", ChemPhysChem, Vol. 4, No. 1, pp. 14-30, 2003.
  3. B. N. Khlebtsov, D. N. Bratashov, N. A. Byzova, B. B. Dzantiev, and N. G. Khlebtsov, "SERS-based lateral flow immunoassay of troponin I by using gap-enhanced Raman tags", Nano Research, Vol. 12, No. 2, pp. 413-420, 2019.
  4. J. Fei, L. Wu, Y. Zhang, S. Zong, Z. Wang, and Y. Cui, "Pharmacokinetics-on-a-Chip Using Label-Free SERS Technique for Programmable Dual-Drug Analysis", ACS Sens., Vol. 2, No. 6, pp. 773-780, 2017.
  5. S. Xu, J. Zhan, B. Man, S. Jiang, W. Yue, S. Gao, C. Guo, H. Liu, Z. Li, J. Wang, and Y. Zhou, "Real-time reliable determination of binding kinetics of DNA hybridization using a multi-channel graphene biosensor", Nat. Commun., Vol. 8, No. 1, p. 14902, 2017.
  6. Q. Zhou, M. Jin, W. Wu, L. Fu, C. Yin, and H. Karimi- Maleh, "Graphene-Based Surface-Enhanced Raman Scattering (SERS) Sensing: Bibliometrics Based Analysis and Review", Chemosensors, Vol. 10, No. 8, p. 317, 2022.
  7. B. N. J. Persson, K. Zhao, and Z. Zhang, "Chemical Contribution to Surface-Enhanced Raman Scattering", Phys. Rev. Lett., Vol. 96, No. 20, p. 207401, 2006.
  8. A. Otto, "The 'chemical' (electronic) contribution to surface-enhanced Raman scattering", J. Raman. Spectrosc., Vol. 36, No. 6-7, pp. 497-509, 2005.
  9. B. Sharma, R. R. Frontiera, A.-I. Henry, E. Ringe, and R. P. Van Duyne, "SERS: Materials, applications, and the future", Mater. Today, Vol. 15, No. 1-2, pp. 16-25, 2012.
  10. C. Guo, Y. Luo, R. Zhou, and G. Wei, "Triphenylalanine peptides self-assemble into nanospheres and nanorods that are different from the nanovesicles and nanotubes formed by diphenylalanine peptides", Nanoscale, Vol. 6, No. 5, pp. 2895-2901, 2014.
  11. X. Kong, Q. Chen, and Z. Sun, "Enhanced SERS of the complex substrate using Au supported on graphene with pyridine and R6G as the probe molecules", Chem. Phys. Lett., Vol. 564, pp. 54-59, 2013.
  12. X.-M. Lin, Y. Cui, Y.-H. Xu, B. Ren, and Z.-Q. Tian, "Surface-enhanced Raman spectroscopy: substrate-related issues", Anal. Bioanal. Chem., Vol. 394, No. 7, pp. 1729-1745, 2009.
  13. B. N. Khlebtsov, D. N. Bratashov, N. A. Byzova, B. B. Dzantiev, and N. G. Khlebtsov, "SERS-based lateral flow immunoassay of troponin I by using gap-enhanced Raman tags", Nano Research, Vol. 12, No. 2, pp. 413-420, 2019.
  14. X. Ling, L. Xie, Y. Fang, H. Xu, H. Zhang, J. Kong, M. S. Dresselhaus, J. Zhang, and Z. Liu, "Can Graphene be used as a Substrate for Raman Enhancement?", Nano Lett., Vol. 10, No. 2, pp. 553-561, 2010.
  15. J. Lee, S. Shim, B. Kim, and H. S. Shin, "Surface-Enhanced Raman Scattering of Single- and Few-Layer Graphene by the Deposition of Gold Nanoparticles", Chem. Eur. J., Vol. 17, No. 8, pp. 2381-2387, 2011.
  16. W. Xu, N. Mao, and J. Zhang, "Graphene: A Platform for Surface-Enhanced Raman Spectroscopy", Small, Vol. 9, No. 8, pp. 1206-1224, 2013.
  17. L. Xie, X. Ling, Y. Fang, J. Zhang, and Z. Liu, "Graphene as a Substrate To Suppress Fluorescence in Resonance Raman Spectroscopy", J. Am. Chem. Soc., Vol. 131, No. 29, pp. 9890-9891, 2009.
  18. Z.-Q. Tian, B. Ren, and D.-Y. Wu, "Surface-Enhanced Raman Scattering: From Noble to Transition Metals and from Rough Surfaces to Ordered Nanostructures", J. Phys. Chem. B, Vol. 106, No. 37, pp. 9463-9483, 2002.
  19. X. Wang, W. Shi, G. She, and L. Mu, "Surface-Enhanced Raman Scattering (SERS) on transition metal and semiconductor nanostructures", Phys. Chem. Chem. Phys., Vol. 14, No. 17, p. 5891, 2012.
  20. A. Otto, "Theory of First Layer and Single Molecule Surface Enhanced Raman Scattering (SERS)", Phys. Stat. Sol. A, Vol. 188, No. 4, pp. 1455-1470, 2001.
  21. W. Ren, Y. Fang, and E. Wang, "A Binary Functional Substrate for Enrichment and Ultrasensitive SERS Spectroscopic Detection of Folic Acid Using Graphene Oxide/Ag Nanoparticle Hybrids", ACS Nano, Vol. 5, No. 8, pp. 6425-6433, 2011.
  22. W. Xu, J. Xiao, Y. Chen, Y. Chen, X. Ling, and J. Zhang, "Graphene-Veiled Gold Substrate for Surface-Enhanced Raman Spectroscopy", Adv. Mater., Vol. 25, No. 6, pp. 928-933, 2013.
  23. Y. Li. H. Yan, D. B. Farmer, X. Meng, W. Zhu, R. M. Osgood, T. F. Heinz, and P. Avouris, "Graphene Plasmon Enhanced Vibrational Sensing of Surface-Adsorbed Layers", Nano Lett., Vol. 14, No. 3, pp. 1573-1577, 2014.
  24. Y. X. Leong, Y. H. Lee, C. S. L. Koh, G. C. Phan-Quang, X. Han, I. Y. Phang, and X. Y. Ling, "Surface-Enhanced Raman Scattering (SERS) Taster: A Machine-Learning- Driven Multireceptor Platform for Multiplex Profiling of Wine Flavors", Nano Lett., Vol. 21, No. 6, pp. 2642-2649, 2021.
  25. Y. Ding, Y. Sun, C. Liu, Q. Jiang, F. Chen, and Y. Cao, "SERS-Based Biosensors Combined with Machine Learning for Medical Application", ChemistryOpen, Vol. 12, No. 1, 2023.
  26. H. Zhou, L. Xu, Z. Ren, J. Zhu, and C. Lee, "Machine learning-augmented surface-enhanced spectroscopy toward next-generation molecular diagnostics", Nanoscale Adv., Vol. 5, No. 3, pp. 538-570, 2023.
  27. R. Beeram, K. R. Vepa, and V. R. Soma, "Recent Trends in SERS-Based Plasmonic Sensors for Disease Diagnostics, Biomolecules Detection, and Machine Learning Techniques", Biosensors, Vol. 13, No. 3, p. 328, 2023.