DOI QR코드

DOI QR Code

Assessment and Monitoring of Structural Damage Using Seismic Wave Interferometry

탄성파 간섭법 탐사를 이용한 건축물 손상 평가 및 모니터링

  • In Seok Joung (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • AHyun Cho (Department of Energy & Mineral Resources Engineering, Sejong University) ;
  • Myung Jin Nam (Department of Energy & Mineral Resources Engineering, Sejong University)
  • 정인석 (세종대학교 에너지자원공학과) ;
  • 조아현 (세종대학교 에너지자원공학과) ;
  • 남명진 (세종대학교 에너지자원공학과)
  • Received : 2024.04.29
  • Accepted : 2024.05.27
  • Published : 2024.05.31

Abstract

Recent research is increasingly focused on utilizing seismic waves for structure health monitoring (SHM). Specifically, seismic interferometry, a technique applied in geophysical surveys using ambient noise, is widely applied in SHM. This method involves analyzing the response of buildings to propagating seismic waves. This enables the estimation of changes in structural stiffness and the evaluation of the location and presence of damage. Analysis of seismic interferometry applied to SHM, along with case studies, indicates its highly effective application for assessing structural stability and monitoring building conditions. Seismic interferometry is thus recognized as an efficient approach for evaluating building integrity and damage detection in SHM and monitoring applications.

최근 탄성파를 기반으로 건축물 안전진단(structure health monitoring, SHM)을 수행하는 방법들에 대한 연구들이 많이 수행되고 있다. 특히 지구물리탐사에서 주로 적용되어 오던 배경 잡음을 이용하는 탄성파 간섭법(seismic interferometry)이 SHM에 많이 적용되고 있다. 탄성파가 건축물 내부로 전파하며 발생하는 건축물의 반응을 분석하여 건축물의 강성 변화를 추정할 수 있을 뿐만 아니라, 건축물의 손상 여부와 그 위치도 평가할 수 있다. SHM에 적용되는 탄성파 간섭법에 대해 분석한 뒤 실제 적용 사례들도 분석한 결과, 탄성파 간섭법은 건축물의 안정성 평가나 모니터링 등에 적용할 수 있는 건축물 손상 탐지 평가 방법으로써 매우 효과적으로 활용할 수 있다고 판단된다.

Keywords

Acknowledgement

이 논문은 2024년도 정부(원자력안전위원회)의 재원으로 사용후핵연료관리핵심기술개발사업단 및 한국원자력안전재단의 지원을 받아 수행된 연구사업입니다(RS-2021-KN066110).

References

  1. Bulajic, B. D., Todorovska, M. I., Manic, M. I., and Trifunac, M. D., 2020, Structural health monitoring study of the ZOIL building using earthquake records, Soil Dynamics and Earthquake Engineering, 133, 106105. https://doi.org/10.1016/j.soildyn.2020.106105
  2. Ebrahimian, M., Rahmani, M., and Todorovska, M. I., 2014, Nonparametric estimation of wave dispersion in high-rise buildings by seismic interferometry, Earthquake Engineering & Structural Dynamics, 43(15), 2361-2375. https://doi.org/10.1002/eqe.2453
  3. Garcia-Macias, E., and Ubertini, F., 2019, Seismic interferometry for earthquake-induced damage identification in historic masonry towers, Mechanical Systems and Signal Processing, 132, 380-404. https://doi.org/10.1016/j.ymssp.2019.06.037
  4. Jang, W. S., and Jeong, S. H., 2020, A study on the validation of measured data from the seismic accelerometers in the safety evaluation system of public buildings, Journal of The Korea Institute for Structural Maintenance and Inspection, 24(5), 150-157 (in Korean with English abstract). https://doi.org/10.11112/jksmi.2020.24.5.150
  5. Jian, J., Snieder, R., and Nakata, N., 2020, Extracting the response of the bay bridge, california, from the application of multichannel deconvolution to earthquake-induced shaking, Bulletin of the Seismological Society of America, 110(2), 556-564. https://doi.org/10.1785/0120190231
  6. Joung, I. S., Cho, A., Jang, H., Kim, B., Cho, C. S., and Nam, M. J., 2022, Seismic interferometry: research trends and technological introduction, Journal of the Korean Society of Mineral and Energy Resources Engineers, 59(2), 205-217 (in Korean with English abstract). https://doi.org/10.32390/ksmer.2022.59.2.205
  7. Kim, H. U., Lee, J. W., and Kim, M. J., 2019, Latest techniques for monitoring the condition of underground structures for disaster response, Magazine of Korean Tunnelling and Underground Space Association, 21(1), 55-66.
  8. Kim, M. K., Oh, T. M., Kim, H., and Lee, J. W., 2018, Determination of elastic velocity of plate-like specimen for estimation of structural damage location, Journal of the Korean Society of Hazard Mitigation, 18(6). 249-258 (in Korean with English abstract). https://doi.org/10.9798/KOSHAM.2018.18.6.249
  9. Kohler, M. D., Heaton, T. H., and Bradford, S. C., 2007, Propagating waves in the steel, moment-frame factor building recorded during earthquakes, Bulletin of the Seismological Society of America, 97(4), 1334-1345. http://dx.doi.org/10.1785/0120060148
  10. Lacanna, G., Ripepe, M., Coli, M., Genco, R., and Marchetti, E., 2019, Full structural dynamic response from ambient vibration of Giotto's bell tower in Firenze (Italy), using modal analysis and seismic interferometry, NDT & E International, 102, 9-15. https://doi.org/10.1016/j.ndteint.2018.11.002
  11. Lobkis, O. I., and Weaver, R. L., 2001, On the emergence of the Green's function in the correlations of a diffuse field, The Journal of the Acoustical Society of America, 110(6), 3011-3017. https://doi.org/10.1121/1.1417528
  12. Lopez-Caballero, F., and Mercerat, E. D., 2018, Damage evaluation of RC building with soil-structure interaction by seismic interferometry: A numerical case study, In 16th European Earthquake Engineering Conference, Thessaloniki, Greece.
  13. Montalvao, D., Ribeiro, A. M. R., and Duarte-Silva, J., 2009, A method for the localization of damage in a CFRP plate using damping, Mechanical Systems and Signal Processing, 23(6), 1846-1854. https://doi.org/10.1016/j.ymssp.2008.08.011
  14. Moon, K. H., 2018, Application and case study of structure health monitoring systems for building, Review of Architecture and Building Science, 62(11), 31-34. http://dx.doi.org/10.11112/jksmi.2015.19.3.010
  15. Mordret, A., Sun, H., Prieto, G. A., Toksoz, M. N., and Buyukozturk, O., 2017, Continuous monitoring of high-rise buildings using seismic interferometry, Bulletin of the Seismological Society of America, 107(6), 2759-2773. https://doi.org/10.1785/0120160282
  16. Nakata, N., and Snieder, R., 2014, Monitoring a building using deconvolution interferometry. ii: ambient-vibration analysismonitoring a building using deconvolution interferometry. II: Ambient-vibration analysis, Bulletin of the Seismological Society of America, 104(1), 204-213. https://doi.org/10.1785/0120130050
  17. Nakata, N., Snieder, R., Kuroda, S., Ito, S., Aizawa, T., and Kunimi, T., 2013, Monitoring a building using deconvolution interferometry. I: Earthquake-data analysis, Bulletin of the Seismological Society of America, 103(3), 1662-1678. https://doi.org/10.1785/0120120291
  18. Pandey, A. K., Biswas, M., and Samman, M. M., 1991, Damage detection from changes in curvature mode shapes, Journal of Sound and Vibration, 145(2), 321-332. https://doi.org/10.1016/0022-460X(91)90595-B
  19. Prieto, G. A., Lawrence, J. F., Chung, A. I., and Kohler, M. D., 2010, Impulse response of civil structures from ambient noise analysis, Bulletin of the Seismological Society of America, 100(5A), 2322-2328. https://doi.org/10.1785/0120090285
  20. Rahmani, M., Ebrahimian, M., and Todorovska, M. I., 2015, Time-wave velocity analysis for early earthquake damage detection in buildings: Application to a damaged full-scale RC building, Earthquake Engineering & Structural Dynamics, 44(4), 619-636. https://doi.org/10.1002/eqe.2539
  21. Safak, E., 1999, Wave-propagation formulation of seismic response of multistory buildings, Journal of Structural Engineering, 125(4), 426-437. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:4(426)
  22. Salawu, O. S., 1997, Detection of structural damage through changes in frequency: a review, Engineering Structures, 19(9), 718-723. https://doi.org/10.1016/S0141-0296(96)00149-6
  23. Sasmal, S., and Ramanjaneyulu, K., 2009, Detection and quantification of structural damage of a beam-like structure using natural frequencies, Engineering, 1(3),167-176. http://dx.doi.org/10.4236/eng.2009.13020
  24. Snieder, R., 2006, The theory of coda wave interferometry, Pure and Applied Geophysics, 163, 455-473. https://doi.org/10.1007/s00024-005-0026-6
  25. Snieder, R., and Safak, E., 2006, Extracting the building response using seismic interferometry: Theory and application to the Millikan Library in Pasadena, California, Bulletin of the Seismological Society of America, 96(2), 586-598. https://doi.org/10.1785/0120050109
  26. Snieder, R., Miyazawa, M., Slob, E., Vasconcelos, I., and Wapenaar, K., 2009, A comparison of strategies for seismic interferometry, Surveys in Geophysics, 30, 503-523. http://dx.doi.org/10.1007/s10712-009-9069-z
  27. Song, H. M., 2023, Ultrasonic imaging technology for nondestructive condition assessment of concrete structures, Magazine of the Korea Concrete Institute, 35(5), 68-72.
  28. Stubbs, N., Kim, J. T., and Topole, K., 1992, An efficient and robust algorithm for damage localization in offshore platforms, In Proceedings of the ASCE 10th structures congress, 1, 543-546. http://dx.doi.org/10.2307/3716590
  29. Sun, H., Mordret, A., Prieto, G. A., Toksoz, M. N., and Buyukozturk, O., 2017, Bayesian characterization of buildings using seismic interferometry on ambient vibrations, Mechanical Systems and Signal Processing, 85, 468-486. http://dx.doi.org/10.1785/0120160282
  30. Todorovska, M. I., and Trifunac, M. D., 2008, Earthquake damage detection in the Imperial County Services Building III: analysis of wave travel times via impulse response functions, Soil Dynamics and Earthquake Engineering, 28(5), 387-404. https://doi.org/10.1016/j.soildyn.2007.07.001
  31. Toksoy, T., and Aktan, A. E., 1994, Bridge-condition assessment by modal flexibility, Experimental Mechanics, 34, 271-278. https://doi.org/10.1007/BF02319765
  32. Tseng, K. K., and Wang, L., 2005, Impedance-based method for nondestructive damage identification, Journal of Engineering Mechanics, 131(1), 58-64. https://doi.org/10.1061/(ASCE)0733-9399(2005)131:1(58)
  33. Uzun, M., 2018, Learning Structures: Fusing Deconvolution-Based Seismic Interferometry with Bayesian Inference for Structural Health Assessment, Doctoral dissertation, Massachusetts Institute of Technology. http://hdl.handle.net/1721.1/115801
  34. Uzun, M., Sun, H., Smit, D., and Buyukozturk, O., 2019, Structural damage detection using Bayesian inference and seismic interferometry, Structural Control and Health Monitoring, 26(11), e2445. https://doi.org/10.1002/stc.2445
  35. Vasconcelos, I., 2008, Generalized representations of perturbed fields-Applications in seismic interferometry and migration, In SEG International Exposition and Annual Meeting, SEG-2008.
  36. Wapenaar, K., 2004, Retrieving the elastodynamic Green's function of an arbitrary inhomogeneous medium by cross correlation, Physical Review Letters, 93(25), 254-301. https://doi.org/10.1103/PhysRevLett.93.254301
  37. Wapenaar, K., van der Neut, J., Ruigrok, E., Draganov, D., Hunziker, J., Slob, E., Thorbecke, J., and Snieder, R., 2011, Seismic interferometry by crosscorrelation and by multidimensional deconvolution: A systematic comparison, Geophysical Journal International, 185(3), 1335-1364. https://doi.org/10.1111/j.1365-246X.2011.05007.x
  38. Wen, W., and Kalkan, E., 2017, System identification based on deconvolution and cross correlation: An application to a 20-story instrumented building in Anchorage, Alaska, Bulletin of the Seismological Society of America, 107(2), 718-740. https://doi.org/10.1785/0120160069