DOI QR코드

DOI QR Code

IMPACT OF FRACTIONAL CONFORMABLE DERIVATIVES ON A(H1N1) INFECTION MODEL

  • Received : 2023.10.23
  • Accepted : 2024.02.18
  • Published : 2024.06.15

Abstract

In this study, the conformable fractional derivative(CFD) of order 𝝔 in conjunction with the LC operator of orderρ is used to develop the model of the transmission of the A(H1N1) influenza infection. A brand-new A(H1N1) influenza infection model is presented, with a population split into four different compartments. Fixed point theorems were used to prove the existence of the solutions and uniqueness of this model. The basic reproduction number R0 was determined. The least and most sensitive variables that could alter R0 were then determined using normalized forward sensitivity indices. Through numerical simulations carried out with the aid of the Adams-Moulton approach, the study also investigated the effects of numerous biological characteristics on the system. The findings demonstrated that if 𝝔 < 1 and ρ < 1 under the CFD, also the findings demonstrated that if 𝝔 = 1 and ρ = 1 under the CFD, the A(H1N1) influenza infection will not vanish.

Keywords

References

  1. P. Agarwal, M. A. Ramadan, A. M. Rageh, and A. R. Hadhoud, A fractional-order mathematical model for analyzing the pandemic trend of COVID-19, Math. Meth. Appl. Sci., 45(8) (2022), 4625-4642. 
  2. S. Bangaru, K. Thamotharan, S. Manickam, A. K. Ramasamy, and R. Perumalsamy, Probing the Ononin and Corylin molecules against anti-influenza H1N1 A virus: a detailed active site analysis, Res. Chemical Intermed., 2023 (2023), 1-20. 
  3. L.-Y. Chang, S.-R. Shih, P.-L. Shao, D. T.-N. Huang, and L.-M. Huang, Novel swine-origin influenza virus A (H1N1): the first pandemic of the 21st century, J. Formosan Medical Ass., 108(7) (2009), 526-532. 
  4. Y. Chen, F. Liu, Q. Yu, and T. Li, Review of fractional epidemic models, Appl.Math. Mod., 97 (2021), 281-307. 
  5. G. Chowell, S. M. Bertozzi, M. A. Colchero, H. Lopez-Gatell, C. Alpuche-Aranda, M. Hernandez, and M. A. Miller, Severe respiratory disease concurrent with the circulation of H1N1 influenza, New England J. Medicine, 361(7) (2009), 674-679. Impact of fractional conformable derivatives on A(H1N1) infection model 619 
  6. K. Diethelm, N. J. Ford, and A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyna., 29 (2002), 3-22. 
  7. F. P. Esper, T. Spahlinger, and L. Zhou, Rate and influence of respiratory virus coinfection on pandemic (H1N1) influenza disease, J. Infection, 63(4) (2011), 260-266. 
  8. S. Etemad, I. Avci, P. Kumar, D. Baleanu, and S. Rezapour, Some novel mathematical analysis on the fractal-fractional model of the AH1N1/09 virus and its generalized Caputo-type version, Chaos, Solitons & Fractals, 162 (2022), 112511. 
  9. G. Gonzalez-Parra, A. J. Arenas, and B. M. Chen-Charpentier, A fractional order epidemic model for the simulation of outbreaks of influenza A (H1N1), Math. Meth. Appl. Sci., 37(15) (2014), 2218-2226. 
  10. J. S. Griffith and L. E. Orgel, Ligand-field theory, Quarterly Rev. Chem. Soc., 11(4) (1957), 381-393. 
  11. A. R. Hadhoud, A. M. Rageh, and T. Radwan, Computational solution of the time-fractional Schrodinger equation by using trigonometric B-spline collocation method, Fractal and Fractional, 6(3) (2022), 127. 
  12. A. R. Hadhoud, H. M. Srivastava, and A. M. Rageh, Non-polynomial B-spline and shifted Jacobi spectral collocation techniques to solve time-fractional nonlinear coupled Burgers equations numerically, Adv. Diff. Equ., 2021 (2021), 1-28. 
  13. A. R. Hadhoud, P. Agarwal, and A. M. Rageh, Numerical treatments of the nonlinear coupled time-fractional Schrodinger equations, Math. Meth. Appl. Sci. 45(11) (2022), 7119-7143. 
  14. J. H. Hoofnagle, Chronic type B hepatitis, Gastroenterology, 84(2) (1983), 422-424. 
  15. F. Jarad, E. Ugurlu, T. Abdeljawad, and D. Baleanu, On a new class of fractional operators, Adv. Diff. Equ., 2017(1) (2017), 1-16. 
  16. B. H. Lim and T. A. Mahmood, Influenza A H1N1 2009 (swine flu) and pregnancy, The J. Obstetrics and Gynecology of India, 61 (2011), 386-393. 
  17. K. S. Miller and B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993. 
  18. C. W. Olsen, The emergence of novel swine influenza viruses in North America, Virus Research, 85(2) (2002), 199-210. 
  19. S. Qureshi, Effects of vaccination on measles dynamics under fractional conformable derivative with Liouville-Caputo operator, The Euro. Phy.. J. Plus, 135(1) (2020), 63. 
  20. S. Rewar, D. Mirdha, and P. Rewar, Treatment and prevention of pandemic H1N1 influenza, Ann. Global Health, 81(5) (2015), 645-653. 
  21. S. Rezapour and H. Mohammadi, A study on the AH1N1/09 influenza transmission model with the fractional Caputo-Fabrizio derivative, Adv. Diff. Equ., 2020(1) (2020), 1-15. 
  22. A. Sakudo, K. Baba, M. Tsukamoto, A. Sugimoto, T. Okada, T. Kobayashi, N. Kawashita, T. Takagi, and K. Ikuta, Anionic polymer, poly (methyl vinyl ether-maleic anhydride)-coated beads-based capture of human influenza A and B virus, Bioorganic & Medicinal Chemistry, 17(2) (2009), 752-757. 
  23. E. Y. Salah, B. Sontakke, M. S. Abdo, W. Shatanawi, K. Abodayeh, M. D. Albalwi, and others, Conformable Fractional-Order Modeling and Analysis of HIV/AIDS Transmission Dynamics, Int. J. Diff. Equ., 2024 (2024). 
  24. D. J. Sencer and J. D. Millar, Reflections on the 1976 swine flu vaccination program, Emerging Infectious Diseases, 12(1) (2006), 29. 
  25. P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosciences, 180(1-2) (2002), 29-48. 
  26. M. Yavuz, F. Ozkose, M. Susam, and M. Kalidass, A new modeling of fractional-order and sensitivity analysis for hepatitis-b disease with real data, Fractal and Fractional, 7(2) (2023), 165.