DOI QR코드

DOI QR Code

Maximum shear modulus of rigid-soft mixtures subjected to overconsolidation stress history

  • Boyoung Yoon (School of Civil and Environmental Engineering, 790 Atlantic Drive, N.W., Georgia Institute of Technology) ;
  • Hyunwook Choo (Department of Civil and Environmental Engineering, Hanyang University)
  • 투고 : 2023.11.30
  • 심사 : 2024.05.02
  • 발행 : 2024.06.10

초록

The use of sand-tire chip mixtures in construction industry is a sustainable and environmentally friendly approach that addresses both waste tire disposal and soil improvement needs. However, the addition of tire chip particles to natural soils decreases maximum shear modulus (Gmax), but increases compressibility, which can be potential drawbacks. This study examines the effect of overconsolidation stress history on the maximum shear modulus (Gmax) of rigid-soft mixtures with varying size ratios (SR) and tire chip contents (TC) by measuring the wave velocity through a 1-D compression test during loading and unloading. The results demonstrate that the Gmax of tested mixtures in the normally consolidated state increased with increasing SR and decreasing TC. However, the tested mixtures with a smaller SR exhibited a greater increase in Gmax during unloading because of the active pore-filling behavior of the smaller rubber particles and the consequent increased connectivity between sand particles. The SR-dependent impact of the overconsolidation stress history on Gmax was verified using the ratio between the swelling and compression indices. Most importantly, this study reveals that the excessive settlement and lower Gmax of rigid-soft mixtures can be overcome by introducing an overconsolidated state in sand-tire chip mixtures with low TC.

키워드

과제정보

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (RS-2023-00208844).

참고문헌

  1. Anastasiadis, A., Senetakis, K. and Pitilakis, K. (2012), "Small-Strain Shear Modulus and Damping Ratio of Sand-Rubber and Gravel-Rubber Mixtures", Geotech. Geol. Eng., 30(2), 363-382. https://doi.org/10.1007/s10706-011-9473-2.
  2. Arachchige, C.M.K., Indraratna, B., Qi, Y., Vinod, J.S. and Rujikiatkamjorn, C. (2022), "Geotechnical characteristics of a Rubber Intermixed Ballast System", Acta Geotech., 17(5), 1847-1858. https://doi.org/10.1007/s11440-021-01342-2.
  3. Arefnia, A., Dehghanbanadaki, A., Kassim, K.A. and Ahmad, K. (2020), "Stabilization of backfill using TDA material under a footing close to retaining wall", Geomech. Eng., 22(3), 197-206. https://doi.org/10.12989/gae.2020.22.3.197.
  4. Atkinson, J.H. (2000), "Non-linear soil stiffness in routine design", Geotechnique, 50(5), 487-508. https://doi.org/10.1680/geot.2000.50.5.487.
  5. Bo, M.W. and Chu, J. (2006), "Impact of geological conditions on ground improvement projects", IAEG2006 The Geological Society of London.
  6. Brunet, S., de la Llera, J.C. and Kausel, E. (2016), "Non-linear modeling of seismic isolation systems made of recycled tirerubber", Soil Dyn. Earthq. Eng., 85, 134-145. https://doi.org/10.1016/j.soildyn.2016.03.019.
  7. Cheng, P., Hu, Y., Yao, K., Fu, Y. and Liu, Y. (2023), "Probabilistic investigations on the elastic stiffness coefficients for suction caisson considering spatially varying soils", Ocean Eng., 289, 116273. https://doi.org/10.1016/j.oceaneng.2023.116273.
  8. Choo, H., Bate, B. and Burns, S.E. (2015), "Effects of organic matter on stiffness of overconsolidated state and anisotropy of engineered organoclays at small strain", Eng. Geol., 184, 19-28. https://doi.org/10.1016/j.enggeo.2014.10.022.
  9. Choo, H. and Burns, S. (2014), "Effect of overconsolidation ratio on dynamic properties of binary mixtures of silica particles", Soil Dyn. Earthq. Eng., 60, 44-50. https://doi.org/10.1016/j.soildyn.2014.01.015.
  10. Choo, H. and Burns, S. (2015), "Shear wave velocity of granular mixtures of silica particles as a function of finer fraction, size ratios and void ratios", Granular Matter., 17(5), 567-578. https://doi.org/10.1007/s10035-015-0580-2.
  11. Edil, T.B. and Bosscher, P.J. (1994), "Engineering properties of tire chips and soil mixtures", Geotech. Test. J., 17, 453-453. http://doi.org/10.1520/GTJ10306J.
  12. Edincliler, A., Baykal, G. and Saygili, A. (2010), "Influence of different processing techniques on the mechanical properties of used tires in embankment construction", Waste Management, 30(6), 1073-1080. https://doi.org/10.1016/j.wasman.2009.09.031..
  13. Ehsani, M., Shariatmadari, N. and Mirhosseini, S.M. (2015), "Shear modulus and damping ratio of sand-granulated rubber mixtures", J. Central South Univ., 22(8), 3159-3167. https://doi.org/10.1007/s11771-015-2853-7.
  14. Evans, T.M. and Valdes, J.R. (2011), "The microstructure of particulate mixtures in one-dimensional compression: numerical studies", Granular Matter., 13(5), 657-669. https://doi.org/10.1007/s10035-011-0278-z.
  15. Feng, Z.Y. and Sutter, K.G. (2000), "Dynamic properties of granulated rubber/sand mixtures", Geotech. Test. J., 23(3), 338-344. https://doi.org/10.1520/GTJ11055J.
  16. Ghazavi, M. and Kavandi, M. (2022), "Shear modulus and damping characteristics of uniform and layered sand-rubber grain mixtures", Soil Dyn. Earthq. Eng., 162, 107412. https://doi.org/10.1016/j.soildyn.2022.107412.
  17. Grayson, J., Khan, A. and Karanfil, T. (2013), "Permeability of uniform and mixed-size tire chips under different loading conditions", J. Irrig. Drain. Eng. - ASCE, 139(11), 939-946. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000637.
  18. Han, H., Choo, H. and Park, J. (2023), "Evaluation of the coefficient of lateral stress at rest of granular materials under repetitive loading conditions", J. Rock Mech. Geotech. Eng., 16(5), 1709-1721. https://doi.org/10.1016/j.jrmge.2023.07.024.
  19. Hataf, N. and Rahimi, M.M. (2006), "Experimental investigation of bearing capacity of sand reinforced with randomly distributed tire shreds", Constr. Build. Mater., 20(10), 910-916. https://doi.org/10.1016/j.conbuildmat.2005.06.019.
  20. Humphrey, D.N. and Manion, W.P. (1992), "Properties of tire chips for lightweight fill", Grouting, Soil Improvement and Geosynthetics.
  21. JoviCIC, V. and Coop, M.R. (1997), "Stiffness of coarse-grained soils at small strains", Geotechnique, 47(3), 545-561. https://doi.org/10.1680/geot.1997.47.3.545.
  22. Kim, H.K. and Santamarina, J.C. (2008), "Sand-rubber mixtures (large rubber chips)", Can. Geotech. J., 45(10), 1457-1466. https://doi.org/10.1139/t08-070.
  23. Lade, P.V. and Yamamuro, J.A. (1997), "Effects of nonplastic fines on static liquefaction of sands", Can. Geotech. J., 34(6), 918-928. https://doi.org/10.1139/t97-052.
  24. Lajevardi, S.H. and Enamia, S. (2021), "Small scale behavior of stone columns encased by tires", Geomech. Eng., 25(5), 429-438. https://doi.org/10.12989/gae.2021.25.5.429.
  25. Lee, C., Truong, Q.H., Lee, W. and Lee, J.S. (2010), "Characteristics of rubber-sand particle mixtures according to size ratio", J. Mater. Civ. Eng., 22(4), 323-331. https://doi:10.1061/(ASCE)MT.1943-5533.0000027.
  26. Lee, J.S. and Santamarina, J.C. (2005), "Bender elements: performance and signal interpretation", J. Geotech. Geoenviron., 131(9), 1063-1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063).
  27. Li, W., Kwok, C.Y., Sandeep, C.S. and Senetakis, K. (2019), "Sand type effect on the behaviour of sand-granulated rubber mixtures: Integrated study from micro- to macro-scales", Powder Technol., 342, 907-916. https://doi.org/10.1016/j.powtec.2018.10.025.
  28. Li, W., Kwok, C.Y. and Senetakis, K. (2020), "Effects of inclusion of granulated rubber tires on the mechanical behaviour of a compressive sand", Can. Geotech. J., 57(5), 763-769. https://doi.org/10.1139/cgj-2019-0112.
  29. Liu, J. and De Lo, D.P. (2001), "Particle rearrangement during powder compaction", Metall. Mater. Trans. A: Phys. Metall. Mater. Sci., 32(12), 3117-3124. https://doi.org/10.1007/s11661-001-0186-7.
  30. Liu, L., Cai, G. and Liu, S. (2018), "Compression properties and micro-mechanisms of rubber-sand particle mixtures considering grain breakage", Constr. Build. Mater., 187, 1061-1072. https://doi.org/10.1016/j.conbuildmat.2018.08.051.
  31. Lopera Perez, J.C., Kwok, C.Y. and Senetakis, K. (2016), "Effect of rubber size on the behaviour of sand-rubber mixtures: A numerical investigation", Comput. Geotech., 80, 199-214. https://doi.org/10.1016/j.compgeo.2016.07.005.
  32. Mark, J.E. (1981), "Rubber elasticity", J. Chem. Educ., 58(11), 898. https://doi.org/10.1021/ed058p898.
  33. Pistolas, G.A., Anastasiadis, A. and Pitilakis, K. (2017), "Dynamic behaviour of granular soil materials mixed with granulated rubber: Effect of rubber content and granularity on the small-strain shear modulus and damping ratio", Geotech. Geol. Eng., 36, 1267-1281. https://doi.org/10.1007/s10706-017-0391-9.
  34. Rao, G.V. and Dutta, R.K. (2006), "Compressibility and Strength Behaviour of Sand-tyre Chip Mixtures", Geotech. Geol. Eng., 24(3), 711-724. https://doi.org/10.1007/s10706-004-4006-x.
  35. Ryu, B., Choo, H., Park, J. and Burns, S.E. (2022), "Stress-Deformation Response of Rigid-Soft Particulate Mixtures under Repetitive Ko Loading Conditions", Transp. Geotech., 37, 100835. https://doi.org/10.1016/j.trgeo.2022.100835.
  36. Santamarina, J.C., Klein, K.A. and Fam, M.A. (2001), Soils and Waves: Particulate Materials Behavior, Characterization and Process Monitoring, J. Wiley & Sons, New York, NY, USA.
  37. Sheikh, M.N., Mashiri, M.S., Vinod, J.S. and Tsang, H.H. (2013), "Shear and compressibility behavior of sand-tire crumb mixtures", J. Mater. Civ. Eng., 25(10), 1366-1374. https://doi.org/10.1061/(ASCE)MT.1943-5533.000069.
  38. Tafreshi, S. and Norouzi, A. (2015), "Application of waste rubber to reduce the settlement of road embankment", Geomech. Eng., 9(2), 219-241. https://doi.org/10.12989/gae.2015.9.2.219.
  39. Tasalloti, A., Chiaro, G., Murali, A. and Banasiak, L. (2021), "Physical and mechanical properties of granulated rubber mixed with granular soils-a literature review", Sustainability, 13(8), 4309. https://doi.org/10.3390/su13084309.
  40. Tsang, H.H., Lo, S.H. and Xu, X. (2012), "Seismic isolation for low-to-medium-rise buildings using granulated rubber-soil mixtures: numerical study", Earthq. Eng. Struct. D., 41(14), 2009-2024. https://doi:10.1002/eqe.2171.
  41. Terzi, N.U., Erenson, C. and Selcuk, M.E. (2015), "Geotechnical properties of tire-sand mixtures as backfill material for buried pipe installations", Geomech. Eng., 9(4), 447-464. https://doi.org/10.12989/gae.2015.9.4.447.
  42. Wang, F., Li, D., Du, W., Zarei, C. and Liu, Y. (2021), "Bender element measurement for small-strain shear modulus of compacted loess", Int. J. Geomech., 21(5), 04021063. http://doi:10.1061/(ASCE)GM.1943-5622.0002004.
  43. Won, J., Ryu, B. and Choo, H. (2023), "Evolution of maximum shear modulus and compression index of rigid-soft mixtures under repetitive K0 loading conditions", Acta Geotech., https://doi.org/10.1007/s11440-023-01945-x.
  44. Xiao, Y., Nan, B. and McCartney, J.S. (2019), "Thermal Conductivity of Sand-Tire Shred Mixtures", J. Geotech. Geoenviron., 145(11), 06019012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002155.
  45. Yadav, J.S. and Tiwari, S.K. (2019), "The impact of end-of-life tires on the mechanical properties of fine-grained soil: A Review", Environ. Dev. Sustain., 21(2), 485-568. https://doi.org/10.1007/s10668-017-0054-2.