DOI QR코드

DOI QR Code

Multi-scale calibration of a line-style sand pluviator

  • Yifan Yang (Faculty of Civil Engineering and Geosciences, Delft University of Technology) ;
  • Dirk A. de Lange (Faculty of Civil Engineering and Geosciences, Delft University of Technology) ;
  • Huan Wang (Faculty of Civil Engineering and Geosciences, Delft University of Technology) ;
  • Amin Askarinejad (Faculty of Civil Engineering and Geosciences, Delft University of Technology)
  • Received : 2023.09.18
  • Accepted : 2024.04.19
  • Published : 2024.06.10

Abstract

A newly developed line-style sand pluviator has been calibrated to prepare repeatable sand specimens of specific statuses of compactness and homogeneity for laboratory tests. Sand is falling via a bottom slot of a fixed hopper, and by moving the sample container under the slot, the container is evenly filled with sand. The pluviator is designed with high flexibility: The falling height of sand, the hopper's opening width and the relative moving speed between the hopper and the sample box can be easily adjusted. By changing these control factors, sand specimens of a wide range of densities can be prepared. A series of specimen preparation was performed using the coarse Merwede River sand. Performance of the pluviator was systematically evaluated by exploring the alteration of achievable density, as well as checking the homogeneity and fabric of the prepared samples by CT scanning. It was found that the density of prepared coarse sand samples has monotonic correlations with none of the three control factors. Furthermore, CT scanning results suggested that the prepared samples exhibited excellent homogeneity in the horizontal direction but periodical alteration of density in the vertical direction. Based on these calibration test results, a preliminary hypothesis is proposed to describe the general working principles of this type of pluviators a priori, illustrating the mechanisms dominating the non-monotonic correlations between control factors and the relative density as well as the vertically prevalent heterogeneity of specimens. Accordingly, practical recommendations are made in a unified framework in order to lessen the load of similar calibration work.

Keywords

Acknowledgement

The authors would like to thank Paul Vermeulen, Kees van Beek, Karel Heller, Roland Klasen, Marc Friebel, Jens van den Berg, Ellen Meijvogel-de Koning, Joost van Meel, and Wim Verwaal for their technical support for this study.

References

  1. Altunbas, A., Soltanbeigi, B. and Cinicioglu, O. (2021), "DEM modelling of retained backfill: Influence of particle shape for different stress paths and densities", Geomech. Eng., 27(3), 273-290. https://doi.org/10.12989/gae.2021.27.3.273.
  2. Arulanandan, K. (1978), "A directional structure index related to sand liquefaction", Proceedings of the ASCE Geotechnical Engineering Division Specialty Conference.
  3. Bolouri Bazaz, J., Zadehmohamad, M. and Hashemi, S.S. (2018), "Developing a portable curtain sand pluviator for reconstitution of soil models (in Persian)", Modares Civil Eng. J., 18(1).
  4. Butterfield, R. and Andrawes, K.Z. (1970), "An air activated sand spreader for forming uniform sand beds", Geotechnique, 20(1), 97-100. https://doi.org/10.1680/geot.1970.20.1.97.
  5. Chian, S.C., Stringer, M.E. and Madabhushi, S.P.G. (2010), "Use of the automatic sand pourers for loose sand models", Proceedings of the 7th International Conference on Physical Modelling in Geotechnics, 7th ICPMG '10.
  6. Choi, S., Lee, M., Choo, H., Tumay, M.T. and Lee W. (2010), "Preparation of a large size granular specimen using a rainer system with a porous plate", Geotech. Test. J., 33(1), 45-54. https://doi.org/10.1520/GTJ101634.
  7. Corte, J.F., Garnier, J., Cottineau, L.M. and Rault, G. (1991), "Determination of model soil properties in the centrifuge", Proceedings of the International Conference on Geotechincal Centrifuge Modelling.
  8. Cresswell, A., Barton, M. and Brown, R. (1999), "Determining the maximum density of sands by pluviation", Geotech. Test. J., 22(4), 324-328. https://doi.org/10.1520/GTJ11245J.
  9. Dave, T.N. and Dasaka, S.M. (2012), "Assessment of portable traveling pluviator to prepare reconstituted sand specimens", Geomech. Eng., 4(2), 79-90. https://doi.org/10.12989/gae.2012.4.2.079.
  10. Desrues, J., Chambon, R., Mokni, M. and Mazerolle, F. (1996), "Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography", Geotechnique, 46(3), 529-546. https://doi.org/10.1680/geot.1996.46.3.529.
  11. Ferrick, A., Wright, V., Manga, M. and Sitar, N. (2022), "Microstructural differences between naturally-deposited and laboratory beach sands", Granular Matter, 24(1), 9. https://doi.org/10.1007/s10035-021-01169-4.
  12. Fretti, C., Lo Presti, D. and Pedroni, S. (1995), "A pluvial deposition method to reconstitute well-graded sand specimens", Geotech. Test. J., 18(2), 292-298. https://doi.org/10.1520/GTJ10330J.
  13. Garcia, F.E., Ando, E., Viggiani, G. and Sitar, N. (2022), "Influence of depositional fabric on mechanical properties of naturally deposited sands", Geotechnique, 74(3), 250-264.. https://doi.org/10.1680/jgeot.21.00230.
  14. Garnier, J. and Cottineau, L.M. (1988), "La centrifugeuse du LCPC: moyens de preparation des modeles et instrumentation", Proc. Centrifuge 88, 83-90.
  15. Hakhamaneshi, M., Black, J.A., Cargill, A., Cox, C.M. and Elmrom, T. (2016), "Development and calibration of a sand pluviation device for preparation of model sand bed for centrifuge tests", Proceedings of the 3rd European Conference on Physical Modelling in Geotechnics.
  16. Hariprasad, C., Rajashekhar, M. and Umashankar, B. (2016), "Preparation of uniform sand specimens using stationary pluviation and vibratory methods", Geotech. Geol. Eng., 34, 1909-1922. https://doi.org/10.1007/s10706-016-0064-0.
  17. Jamil, I., Ahmad, I., Ullah, W., Junaid, M. and Khan, S.A. (2022), "Uniform large scale cohesionless soil sample preparation using mobile pluviator", Geomech. Eng., 28(5), 521-529. https://doi.org/10.12989/gae.2022.28.5.521.
  18. Khatri, V.N., Debbarma, S.P., Dutta, R.K. and Mohanty, B. (2017), "Pressure-settlement behaviour of square and rectangular skirted footings resting on sand", Geomech. Eng., 12(4), 689-705. https://doi.org/10.12989/gae.2017.12.4.689.
  19. Kolbuszewski, J.J. (1948), "An experimental study of the maximum and minimum porosities of sands", Proceedings of the Second International Conference of Soil Mechanics and Foundation Engineering.
  20. Kolbuszewski, J.J. and Jones, R.H. (1961), "The preparation of sand samples for laboratory testing", Proceedings of the Midland Soil Mechanics Foundation Engineering Society.
  21. Lade, P.V., Yamamuro, J.A. and Liggio Jr, C.D. (2009), "Effects of fines content on void ratio, compressibility, and static liquefaction of silty sand", Geomech. Eng., 1(1), 1-15. https://doi.org/10.12989/gae.2009.1.1.001.
  22. Lagioia, R., Sanzeni, A. and Colleselli, F. (2006), "Air, water and vacuum pluviation of sand specimens for the triaxial apparatus", Soils Found., 46(1), 61-67. https://doi.org/10.3208/sandf.46.61.
  23. Lee, K.L. (1965), "Triaxial compressive strength of saturated sand under seismic loading conditions", PhD dissertation, University of California, Berkeley.
  24. Lo Presti, D., Berardi, R., Pedroni, S. and Crippa, V. (1993), "A new traveling sand pluviator to reconstitute specimens of wellgraded silty sands", Geotech. Test. J., 16(1), 18-26. https://doi.org/10.1520/ GTJ10263J.
  25. Madabhushi, S.P.G., Houghton, N.E. and Haigh, S.K. (2006), "A new automatic sand pourer for model preparation at University of Cambridge", Proceedings of the 6th International Conference on Physical Modelling in Geotechnics.
  26. Mamen, B. and Hammoud, F. (2021), "Microstructural observations of shear zones at cohesive soil-steel interfaces under large shear displacements", Geomech. Eng., 25(4), 275-282. https://doi.org/10.12989/gae.2021.25.4.275.
  27. Oda, M. (1972a), "Initial fabrics and their relations to mechanical properties of granular material", Soils Found., 12(1), 17-36. https://doi.org/10.3208/sandf1960.12.17.
  28. Oda, M. (1972b), "The mechanism of fabric changes during compressional deformation of sand", Soils Found., 12(2), 1-18. https://doi.org/ 10.3208/sandf1972.12.1.
  29. Powers, M.C. (1953), "A new roundness scale for sedimentary particles", J. Sedimentary Res., 23(2), 117-119. https://doi.org/10.1306/D4269567-2B26-11D7-8648000102C1865D.
  30. Safdar, M., Newson, T. and Waseem, M. (2022), "Fiber orientation distribution of reinforced cemented Toyoura sand", Geomech. Eng., 30(1), 67.
  31. Schofield, A.N. (1980), "Cambridge geotechnical centrifuge operations", Geotechnique, 30(3), 227-268. https://doi.org/10.1680/geot.1980.30.3.227.
  32. Stuit, H.G. (1995), "Sand in the geotechnical centrifuge", PhD dissertation, Delft University of Technology.
  33. Sze, H. and Yang, J. (2014), "Failure modes of sand in undrained cyclic loading: impact of sample preparation", J. Geotech. Geoenviron. Eng., 140(1), 152-169. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000971.
  34. Vaid, Y.P. and Negussey, D. (1984), "Relative density of pluviated sand samples", Soils Found., 24(2), 101-105. https://doi.org/10.3208/sandf1972.24.2_101.
  35. Wadell, H. (1932), "Volume, shape, and roundness of rock particles", J. Geol., 40(5), 443-451. https://doi.org/10.1086/623964.
  36. Wadell, H. (1935), "Volume, shape, and roundness of quartz particles", J. Geol., 43(3), 250-280. https://doi.org/10.1086/624298.
  37. Wijewickreme, D., Sriskandakumar, S. and Byrne, P. (2005), "Cyclic loading response of loose air-pluviated fraser river sand for validation of numerical models simulating centrifuge tests", Can. Geotech. J., 42(2), 550-561. https://doi.org/10.1139/t04-119.
  38. Zhang, Z. and Chian, S.C. (2022), "Layering effects of sand samples prepared by travelling pluviators", Int. J. Phys. Model. Geotech., https://doi.org/10.1680/jphmg.20.00061.
  39. Zheng, J. and Hryciw, R.D. (2015), "Traditional soil particle sphericity, roundness and surface roughness by computational geometry", Geotechnique, 65(6), 494-506. https://doi.org/10.1680/geot.14.P.192.