Acknowledgement
The authors are grateful for the financial supports from the National Natural Science Foundation of Sichuan Province of China (Grants number 2022NSFSC0004, 2022NSFSC0431).
References
- Anina, S., Rudiger, H. and Stanko, B. (2015), "Numerical simulations and experimental validations of force coefficients and flutter derivatives of a bridge deck", J. Wind Eng. Ind. Aerod., 144, 172-182. https://doi.org/10.1016/j.jweia.2015.04.017.
- Bai, H., Ji, N.C., Xu, G.J. and L, J.W. (2020), "An alternative aerodynamic mitigation measure for improving bridge flutter and vortex induced vibration (VIV) stability: Sealed traffic barrier", J. Wind Eng. Ind. Aerod., 206, 104302. https://doi.org/10.1016/j.jweia.2020.104302.
- Baldomir, A., Kusano, I., Hernandez, S. and Jurado, J.A. (2013), "A reliability study for the Messina Bridge with respect to flutter phenomena considering uncertainties in experimental and numerical data", Compu. Struct., 128, 91-100. https://doi.org/10.1016/j.compstruc.2013.07.004.
- Bruno, L., Venuti, F. and Nasce, V. (2012), "Pedestrian-induced torsional vibrations of suspended footbridges: Proposal and evaluation of vibration countermeasures", Eng. Struct., 36, 228-238. https://doi.org/10.1016/j.engstruct.2011.12.012.
- Chen, A.R., Zhou, Z.Y. and Xiang, H.F. (2006), "On the mechanism of vertical stabilizer plates for improving aerodynamic stability of bridges", Wind Struct., 9(1), 59-74. https://doi.org/10.12989/was.2006.9.1.059.
- Chen, X.Y., Hu, R.J., Tang, H.J., Li, Y.L., Yu, E.B. and Wang, L. (2020), "Flutter stability of a long-span suspension bridge during erection in mountainous areas", Int. J. Struct. Stab. Dyn., 20(9), 2050102. https://doi.org/10.1142/S0219455420501023.
- Fan, S.W., Chen, W., Tang, H.J. and Li, Y.L. (2022), "Aerodynamic interference between two boxes in parallel arrangement and flow field characteristics around the girder", Adv. Bridge Eng., 3, 21. https://doi.org/10.1186/s43251-022-00079-6.
- Han, Y., Liu, S.Q., Cai, C.S. and Li, C.G. (2015), "Flutter stability of a long-span suspension bridge during erection", Wind Struct., 21(1), 41-61. https://doi.org/10.12989/was.2015.21.1.041.
- Honda, A., Miyata, H. and Shibata, H. (1998), "Aerodynamic stability of narrow decked suspension bridge (Aki-nada Ohashi Bridge)", J. Wind Eng. Ind. Aerod., 77-78, 409-420. https://doi.org/10.1016/S0167-6105(98)00160-3
- Kim, S., Shim, J. and Kim, H. (2020), "How wind affects vehicles crossing a double-deck suspension bridge", J. Wind Eng. Ind. Aerod., 206, 104329. https://doi.org/10.1016/S0167-6105(98)00160-3.
- Ko, J.M., Xue, S.D. and Xu, Y.L. (1998), "Modal analysis of suspension bridge deck units in erection stage", Eng. Struct., 20(12), 1102-1112. https://doi.org/10.1016/S0141-0296(97)00207-1.
- Kwon, S.D., Chang, S.P., Kim, Y.S. and Park, S.Y. (1995), "Aerodynamic stability of self-anchored double deck suspension bridge", J. Wind Eng. Ind. Aerod., 54-55, 25-34. https://doi.org/10.1016/0167-6105(94)00026-A.
- Larsen, A. (1997), "Prediction of aeroelastic stability of suspension bridges during erection", J. Wind Eng. Ind. Aerod., 72, 265-274. https://doi.org/10.1016/S0167-6105(97)00248-1.
- Lavassani, S.H.H., Alizadeh, H., Gharehbaghi, V., Farsangi, E.N. and Yang, T.Y. (2022), "Flutter control of truss-type suspension bridges with a tuned mass damper based on the mass polar moment of inertia's optimum configuration", Eng. Struct., 268, 11474. https://doi.org/10.1016/j.engstruct.2022.114774.
- Li, K., Han, Y., Cai, C.S., Hu, P. and Li, C.G. (2021), "Experimental investigation on post-flutter characteristics of a typical steel-truss suspension bridge deck", J. Wind Eng. Ind. Aerod., 216, 104724. https://doi.org/10.1016/j.jweia.2021.104724.
- Li, K., Zhao, L., Ge, Y.J. and Guo, Z.W. (2017), "Flutter suppression of a suspension bridge sectional model by the feedback controlled twin-winglet system", J. Wind Eng. Ind. Aerod., 168, 101-109. https://doi.org/10.1016/j.jweia.2017.05.007.
- Ma, T., Cui, W., Zhao, L., Yang, Y. and Ge, Y. (2022), "Optimization of long-span suspension bridge erection procedure considering flutter risk in mixed extreme wind events", J. Wind Eng. Ind. Aerod., 222, 104889. https://doi.org/10.1016/j.jweia.2021.104889.
- Matsumoto, M., Shirato, H., Yagi, T., Shijo, R., Eguchi, A. and Tamaki, H. (2003), "Effects of aerodynamic interferences between heaving and torsional vibration of bridge decks: the case of Tacoma Narrows Bridge", J. Wind Eng. Ind. Aerod., 91(12-15), 1547-1557. https://doi.org/10.1016/j.jweia.2003.09.010.
- Moller, R.N., Krenk, S. and Svendsen, M.N. (2019), "Damping system for long-span suspension bridges", Struct. Control Health Monit., 26(12), e2448. https://doi.org/10.1002/stc.2448.
- Montoya, M.C., Nieto, F., Hernandez, S., Kusano, I., A lvarez, A.J. and Jurado, J.A . (2018), "CFD-based aeroelastic characterization of streamlined bridge deck cross-sections subject to shape modifications using surrogate models", J. Wind Eng. Ind. Aerod., 177, 405-428. https://doi.org/10.1016/j.jweia.2018.01.014.
- Simiu, E. and Scanlan, R.H. (1996), "Wind effects on structures: Fundamentals and applications to design", John Wiley & Sons, INC., New York, USA.
- Tanaka, H. and Gimsing, H.J. (1999), "Aerodynamic stability of non-symmetrically erected suspension bridge girders", J. Wind Eng. Ind. Aerod., 80(1-2), 85-104. https://doi.org/10.1016/S0167-6105(98)00197-4.
- Tang, H. and Li, Y. (2023), "Flutter performance of a double-main-span suspension bridge during erection with temporary constraints on girders", J. Wind Eng. Ind. Aerod., 240, 105508. https://doi.org/10.1016/j.jweia.2023.105508.
- Tang, H., Li, Y., Chen, X., Shum, K.M. and Liao, H. (2017a), "Flutter performance of central-slotted plate at large angles of attack", Wind Struct., 24(5), 447-464. https://doi.org/10.12989/was.2017.24.5.447.
- Tang, H., Li, Y., Wang, Y. and Tao, Q. (2017b), "Aerodynamic optimization for flutter performance of steel truss stiffening girder at large angles of attack", J. Wind Eng. Ind. Aerod., 168, 260-270. https://doi.org/10.1016/j.jweia.2017.06.013.
- Tang, H., Zhang, H., Mo, W. and Li, Y. (2021), "Flutter performance of box girders with different wind fairings at large angles of attack", Wind Struct., 32(5), 509-520. https://doi.org/10.12989/was.2021.32.5.509.
- Ueda, T., Yasuda, M. and Nakagaki, R. (1990), "Mechanism of aerodynamic stabilization for long-span suspension bridge with stiffening truss-girder", J. Wind Eng. Ind. Aerod., 33(1-2), 333-340. https://doi.org/10.1016/0167-6105(90)90048-H.
- Wu, B., Chen, X.Z., Wang, Q., Liao, H.L. and Dong, J.H. (2020a), "Characterization of vibration amplitude of nonlinear bridge flutter from section model test to full bridge estimation", J. Wind Eng. Ind. Aerod., 197, 104048. https://doi.org/10.1016/j.jweia.2019.104048.
- Wu, B., Wang, Q., Liao, H.L. and Mei, H.Y. (2020b), "Hysteresis response of nonlinear flutter of a truss girder: Experimental investigations and theoretical predictions", Comput. Struct., 238, 106267. https://doi.org/10.1016/j.compstruc.2020.106267.
- Wu, T., He, J. and Li, S. (2023), "Active flutter control of long-span bridges via deep reinforcement learning: A proof of concept", Wind Struct., 36(5), 321-331. https://doi.org/10.12989/was.2023.36.5.321.
- Yang, Y.X., Zhang, L., Ding, Q.S. and Ge, Y.J. (2018), "Flutter performance and improvement for a suspension bridge with central-slotted box girder during erection", J. Wind Eng. Ind. Aerod., 179, 118-124. https://doi.org/10.1016/j.jweia.2018.05.016.
- Zhang, X.J., He, Z.C., Zhou, N. and Hu, K. (2022), "Schemes for improving flutter performance of suspension bridges during deck erection under normal and skew winds", J. Bridge Eng., 27(11). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001957.
- Zhang, X.J., Pan, X.R., Leng, Y.H. and Chen, B.Z. (2024), "Investigation on flutter stability of three-tower suspension bridges under skew wind", Wind Struct., 38(1), 43-58. https://doi.org/10.12989/was.2024.38.1.043.
- Zhang, X.J., Ying, F.B., Zhao, C.Y. and Pan, X.R. (2023), "Flutter stability of a long-span suspension bridge during erection under skew wind", Wind Struct., 37(1), 39-56. https://doi.org/10.12989/was.2023.37.1.025.
- Zhou, R., Ge, Y. and Liu, S. (2020), "Nonlinear flutter control of a long-span closed-box girder bridge with vertical stabilizers subjected to various turbulence flows", Thin-Wall. Struct., 149, 106245. https://doi.org/10.1016/j.tws.2019.106245.
- Zhou, R., Ge, Y. and Yang, Y. (2023), "Effects of vertical central stabilizers on nonlinear wind-induced stabilization of a closed-box girder suspension bridge with various aspect ratios", Nonlinear Dyn., 111, 9127-9143. https://doi-orgs.era.lib.swjtu.edu.cn:443/10.1007/s11071-023-08358-1.
- Zhu, L.D., Xu, Y.L. and Xiang, H.F. (2002), "Tsing Ma bridge deck under skew winds-Part II: flutter derivatives", J. Wind Eng. Ind. Aerod., 90(7), 807-837. https://doi.org/10.1016/S0167-6105(02)00159-9.
- Zhu, Z.W., Chen, Z.Q. and Gu, M. (2009), "CFD based simulations of flutter characteristics of ideal thin plates with and without central slot", Wind Struct., 12(1), 1-19. https://doi.org/10.12989/was.2009.12.1.001.