DOI QR코드

DOI QR Code

Temporary aerodynamic countermeasures for flutter suppression of a double-deck truss girder during erection

  • Zewen Wang (Department of Bridge Engineering, Southwest Jiaotong University) ;
  • Bokai Yang (Department of Bridge Engineering, Southwest Jiaotong University) ;
  • Haojun Tang (Department of Bridge Engineering, Southwest Jiaotong University) ;
  • Yongle Li (Department of Bridge Engineering, Southwest Jiaotong University)
  • Received : 2023.11.01
  • Accepted : 2024.05.05
  • Published : 2024.05.25

Abstract

Long-span suspension bridges located in typhoon-prone regions face significant risks of flutter instability, particularly in girder erection. Despite the implementation of aerodynamic countermeasures designed for the service stage, the flutter stability of bridge in girder erection may not meet the required standards. Nowadays, the double-deck truss girder is increasingly common in practical engineering which exhibits different performance from the single-deck truss girder. To gain insights into the flutter performance of this girder type and determine temporary aerodynamic countermeasures for flutter suppression in girder erection, wind tunnel tests were conducted. The effects of affiliated members on the flutter performance were first examined. Subsequently, different aerodynamic countermeasures were designed and their effectiveness was tested. The results indicate that the stabilizers above and below the upper and lower decks are the most effective for the flutter stability of bridge at positive and negative angles of attack, respectively. The higher the stabilizers are, the better the effect on flutter suppression achieves. Considering the feasibility in practical engineering, a temporary stabilizer above the upper deck was considered. It is expected that the results could provide references for the aerodynamic design of double-deck truss girder during erection.

Keywords

Acknowledgement

The authors are grateful for the financial supports from the National Natural Science Foundation of Sichuan Province of China (Grants number 2022NSFSC0004, 2022NSFSC0431).

References

  1. Anina, S., Rudiger, H. and Stanko, B. (2015), "Numerical simulations and experimental validations of force coefficients and flutter derivatives of a bridge deck", J. Wind Eng. Ind. Aerod., 144, 172-182. https://doi.org/10.1016/j.jweia.2015.04.017.
  2. Bai, H., Ji, N.C., Xu, G.J. and L, J.W. (2020), "An alternative aerodynamic mitigation measure for improving bridge flutter and vortex induced vibration (VIV) stability: Sealed traffic barrier", J. Wind Eng. Ind. Aerod., 206, 104302. https://doi.org/10.1016/j.jweia.2020.104302.
  3. Baldomir, A., Kusano, I., Hernandez, S. and Jurado, J.A. (2013), "A reliability study for the Messina Bridge with respect to flutter phenomena considering uncertainties in experimental and numerical data", Compu. Struct., 128, 91-100. https://doi.org/10.1016/j.compstruc.2013.07.004.
  4. Bruno, L., Venuti, F. and Nasce, V. (2012), "Pedestrian-induced torsional vibrations of suspended footbridges: Proposal and evaluation of vibration countermeasures", Eng. Struct., 36, 228-238. https://doi.org/10.1016/j.engstruct.2011.12.012.
  5. Chen, A.R., Zhou, Z.Y. and Xiang, H.F. (2006), "On the mechanism of vertical stabilizer plates for improving aerodynamic stability of bridges", Wind Struct., 9(1), 59-74. https://doi.org/10.12989/was.2006.9.1.059.
  6. Chen, X.Y., Hu, R.J., Tang, H.J., Li, Y.L., Yu, E.B. and Wang, L. (2020), "Flutter stability of a long-span suspension bridge during erection in mountainous areas", Int. J. Struct. Stab. Dyn., 20(9), 2050102. https://doi.org/10.1142/S0219455420501023.
  7. Fan, S.W., Chen, W., Tang, H.J. and Li, Y.L. (2022), "Aerodynamic interference between two boxes in parallel arrangement and flow field characteristics around the girder", Adv. Bridge Eng., 3, 21. https://doi.org/10.1186/s43251-022-00079-6.
  8. Han, Y., Liu, S.Q., Cai, C.S. and Li, C.G. (2015), "Flutter stability of a long-span suspension bridge during erection", Wind Struct., 21(1), 41-61. https://doi.org/10.12989/was.2015.21.1.041.
  9. Honda, A., Miyata, H. and Shibata, H. (1998), "Aerodynamic stability of narrow decked suspension bridge (Aki-nada Ohashi Bridge)", J. Wind Eng. Ind. Aerod., 77-78, 409-420.
  10. Kim, S., Shim, J. and Kim, H. (2020), "How wind affects vehicles crossing a double-deck suspension bridge", J. Wind Eng. Ind. Aerod., 206, 104329. https://doi.org/10.1016/S0167-6105(98)00160-3.
  11. Ko, J.M., Xue, S.D. and Xu, Y.L. (1998), "Modal analysis of suspension bridge deck units in erection stage", Eng. Struct., 20(12), 1102-1112. https://doi.org/10.1016/S0141-0296(97)00207-1.
  12. Kwon, S.D., Chang, S.P., Kim, Y.S. and Park, S.Y. (1995), "Aerodynamic stability of self-anchored double deck suspension bridge", J. Wind Eng. Ind. Aerod., 54-55, 25-34. https://doi.org/10.1016/0167-6105(94)00026-A.
  13. Larsen, A. (1997), "Prediction of aeroelastic stability of suspension bridges during erection", J. Wind Eng. Ind. Aerod., 72, 265-274. https://doi.org/10.1016/S0167-6105(97)00248-1.
  14. Lavassani, S.H.H., Alizadeh, H., Gharehbaghi, V., Farsangi, E.N. and Yang, T.Y. (2022), "Flutter control of truss-type suspension bridges with a tuned mass damper based on the mass polar moment of inertia's optimum configuration", Eng. Struct., 268, 11474. https://doi.org/10.1016/j.engstruct.2022.114774.
  15. Li, K., Han, Y., Cai, C.S., Hu, P. and Li, C.G. (2021), "Experimental investigation on post-flutter characteristics of a typical steel-truss suspension bridge deck", J. Wind Eng. Ind. Aerod., 216, 104724. https://doi.org/10.1016/j.jweia.2021.104724.
  16. Li, K., Zhao, L., Ge, Y.J. and Guo, Z.W. (2017), "Flutter suppression of a suspension bridge sectional model by the feedback controlled twin-winglet system", J. Wind Eng. Ind. Aerod., 168, 101-109. https://doi.org/10.1016/j.jweia.2017.05.007.
  17. Ma, T., Cui, W., Zhao, L., Yang, Y. and Ge, Y. (2022), "Optimization of long-span suspension bridge erection procedure considering flutter risk in mixed extreme wind events", J. Wind Eng. Ind. Aerod., 222, 104889. https://doi.org/10.1016/j.jweia.2021.104889.
  18. Matsumoto, M., Shirato, H., Yagi, T., Shijo, R., Eguchi, A. and Tamaki, H. (2003), "Effects of aerodynamic interferences between heaving and torsional vibration of bridge decks: the case of Tacoma Narrows Bridge", J. Wind Eng. Ind. Aerod., 91(12-15), 1547-1557. https://doi.org/10.1016/j.jweia.2003.09.010.
  19. Moller, R.N., Krenk, S. and Svendsen, M.N. (2019), "Damping system for long-span suspension bridges", Struct. Control Health Monit., 26(12), e2448. https://doi.org/10.1002/stc.2448.
  20. Montoya, M.C., Nieto, F., Hernandez, S., Kusano, I., A lvarez, A.J. and Jurado, J.A . (2018), "CFD-based aeroelastic characterization of streamlined bridge deck cross-sections subject to shape modifications using surrogate models", J. Wind Eng. Ind. Aerod., 177, 405-428. https://doi.org/10.1016/j.jweia.2018.01.014.
  21. Simiu, E. and Scanlan, R.H. (1996), "Wind effects on structures: Fundamentals and applications to design", John Wiley & Sons, INC., New York, USA.
  22. Tanaka, H. and Gimsing, H.J. (1999), "Aerodynamic stability of non-symmetrically erected suspension bridge girders", J. Wind Eng. Ind. Aerod., 80(1-2), 85-104. https://doi.org/10.1016/S0167-6105(98)00197-4.
  23. Tang, H. and Li, Y. (2023), "Flutter performance of a double-main-span suspension bridge during erection with temporary constraints on girders", J. Wind Eng. Ind. Aerod., 240, 105508. https://doi.org/10.1016/j.jweia.2023.105508.
  24. Tang, H., Li, Y., Chen, X., Shum, K.M. and Liao, H. (2017a), "Flutter performance of central-slotted plate at large angles of attack", Wind Struct., 24(5), 447-464. https://doi.org/10.12989/was.2017.24.5.447.
  25. Tang, H., Li, Y., Wang, Y. and Tao, Q. (2017b), "Aerodynamic optimization for flutter performance of steel truss stiffening girder at large angles of attack", J. Wind Eng. Ind. Aerod., 168, 260-270. https://doi.org/10.1016/j.jweia.2017.06.013.
  26. Tang, H., Zhang, H., Mo, W. and Li, Y. (2021), "Flutter performance of box girders with different wind fairings at large angles of attack", Wind Struct., 32(5), 509-520. https://doi.org/10.12989/was.2021.32.5.509.
  27. Ueda, T., Yasuda, M. and Nakagaki, R. (1990), "Mechanism of aerodynamic stabilization for long-span suspension bridge with stiffening truss-girder", J. Wind Eng. Ind. Aerod., 33(1-2), 333-340. https://doi.org/10.1016/0167-6105(90)90048-H.
  28. Wu, B., Chen, X.Z., Wang, Q., Liao, H.L. and Dong, J.H. (2020a), "Characterization of vibration amplitude of nonlinear bridge flutter from section model test to full bridge estimation", J. Wind Eng. Ind. Aerod., 197, 104048. https://doi.org/10.1016/j.jweia.2019.104048.
  29. Wu, B., Wang, Q., Liao, H.L. and Mei, H.Y. (2020b), "Hysteresis response of nonlinear flutter of a truss girder: Experimental investigations and theoretical predictions", Comput. Struct., 238, 106267. https://doi.org/10.1016/j.compstruc.2020.106267.
  30. Wu, T., He, J. and Li, S. (2023), "Active flutter control of long-span bridges via deep reinforcement learning: A proof of concept", Wind Struct., 36(5), 321-331. https://doi.org/10.12989/was.2023.36.5.321.
  31. Yang, Y.X., Zhang, L., Ding, Q.S. and Ge, Y.J. (2018), "Flutter performance and improvement for a suspension bridge with central-slotted box girder during erection", J. Wind Eng. Ind. Aerod., 179, 118-124. https://doi.org/10.1016/j.jweia.2018.05.016.
  32. Zhang, X.J., He, Z.C., Zhou, N. and Hu, K. (2022), "Schemes for improving flutter performance of suspension bridges during deck erection under normal and skew winds", J. Bridge Eng., 27(11). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001957.
  33. Zhang, X.J., Pan, X.R., Leng, Y.H. and Chen, B.Z. (2024), "Investigation on flutter stability of three-tower suspension bridges under skew wind", Wind Struct., 38(1), 43-58. https://doi.org/10.12989/was.2024.38.1.043.
  34. Zhang, X.J., Ying, F.B., Zhao, C.Y. and Pan, X.R. (2023), "Flutter stability of a long-span suspension bridge during erection under skew wind", Wind Struct., 37(1), 39-56. https://doi.org/10.12989/was.2023.37.1.025.
  35. Zhou, R., Ge, Y. and Liu, S. (2020), "Nonlinear flutter control of a long-span closed-box girder bridge with vertical stabilizers subjected to various turbulence flows", Thin-Wall. Struct., 149, 106245. https://doi.org/10.1016/j.tws.2019.106245.
  36. Zhou, R., Ge, Y. and Yang, Y. (2023), "Effects of vertical central stabilizers on nonlinear wind-induced stabilization of a closed-box girder suspension bridge with various aspect ratios", Nonlinear Dyn., 111, 9127-9143. https://doi-orgs.era.lib.swjtu.edu.cn:443/10.1007/s11071-023-08358-1.
  37. Zhu, L.D., Xu, Y.L. and Xiang, H.F. (2002), "Tsing Ma bridge deck under skew winds-Part II: flutter derivatives", J. Wind Eng. Ind. Aerod., 90(7), 807-837. https://doi.org/10.1016/S0167-6105(02)00159-9.
  38. Zhu, Z.W., Chen, Z.Q. and Gu, M. (2009), "CFD based simulations of flutter characteristics of ideal thin plates with and without central slot", Wind Struct., 12(1), 1-19. https://doi.org/10.12989/was.2009.12.1.001.