DOI QR코드

DOI QR Code

Multi-hazard vulnerability modeling: an example of wind and rain vulnerability of mid/high-rise buildings during hurricane events

  • Zhuoxuan Wei (Mechanical and Civil Engineering Department, Florida Institute of Technology, 150 W. University Blvd.) ;
  • Jean-Paul Pinelli (Mechanical and Civil Engineering Department, Florida Institute of Technology, 150 W. University Blvd.) ;
  • Kurtis Gurley (Engineering School of Sustainable Infrastructure & Environment, University of Florida) ;
  • Shahid Hamid (Department of Finance, College of Business, Florida International University, Modesto A. Maidique Campus)
  • Received : 2023.12.10
  • Accepted : 2024.03.03
  • Published : 2024.05.25

Abstract

Severe natural multi-hazard events can cause damage to infrastructure and economic losses of billions of dollars. The challenges of modeling these losses include dependency between hazards, cause and sequence of loss, and lack of available data. This paper presents and explores multi-hazard loss modeling in the context of the combined wind and rain vulnerability of mid/high-rise buildings during hurricane events. A component-based probabilistic vulnerability model provides the framework to test and contrast two different approaches to treat the multi-hazards: In one, the wind and rain hazard models are both decoupled from the vulnerability model. In the other, only the wind hazard is decoupled, while the rain hazard model is embedded into the vulnerability model. The paper presents the mathematical and conceptual development of each approach, example outputs from each for the same scenario, and a discussion of weaknesses and strengths of each approach.

Keywords

Acknowledgement

The National Science Foundation supports the Center for Wind Hazard and Infrastructure Performance (WHIP-C) through grant # 1841523, and the Industrial Advisory Board of the WHIP-C supported this work through grant number WHIP2020_06. The Florida Office of Insurance Regulation (FOIR) also supported part of this work. The opinions, findings, and conclusions presented in this paper are those of the author alone, and do not necessarily represent the views of the NSF or the WHIP-C or the FOIR.

References

  1. Baradaranshoraka, M., Pinelli, J.-P., Gurley, K., Peng, X. and Zhao, M. (2017), "Hurricane Wind versus Storm Surge Damage in the Context of a Risk Prediction Model", J. Struct. Eng., 143(9). https://doi.org/10.1061/(asce)st.1943-541x.0001824. 
  2. Baradaranshoraka, M., Pinelli, J.-P., Gurley, K., Zhao, M., Peng, X. and Paleo-Torres, A. (2019), "Characterization of coastal flood damage states for residential buildings", ASCE-ASME J. Risk Uncertainty Eng. Sys. Part A: Civil Eng., 5(1). https://doi.org/10.1061/ajrua6.0001006. 
  3. Barbato, M., Petrini, F., Unnikrishnan, V.U. and Ciampoli, M. (2013), "Performance-Based Hurricane Engineering (PBHE) framework", Struct. Safety, 45, 24-35. https://doi.org/10.1016/J.STRUSAFE.2013.07.002. 
  4. Bhandari, A., Datta, G. and Bhattacharjya, S. (2018), "Efficient wind fragility analysis of RC high rise building through metamodeling", Wind Struct., 27(3), 199-211. https://doi.org/10.12989/was.2018.27.3.199. 
  5. Biasi, G., Mohammed, M.S. and Sanders, D.H. (2017), "Earthquake damage estimations: ShakeCast case study on Nevada bridges", Earthq. Spectra, 33(1), 45-62. https://doi.org/10.1193/121815EQS185M. 
  6. Borgonovo, E., Castaings, W. and Tarantola, S. (2012), "Model emulation and moment-independent sensitivity analysis: An application to environmental modelling", Environ. Modelling Softw., 34, 105-115. https://doi.org/10.1016/J.ENVSOFT.2011.06.006. 
  7. Chian, S.C. (2016), "A complementary engineering-based building damage estimation for earthquakes in catastrophe modeling", Int. J. Disaster Risk Sci., 7(1), 88-107. https://doi.org/10.1007/S13753-016-0078-5/TABLES/10. 
  8. Ciabattoni, M., Petrini, F. and Pampanin, S. (2024), "Multi-hazard design of low-damage high-rise steel-timber buildings subjected to wind and earthquake loading", Eng. Struct., 303, 117522. https://doi.org/10.1016/J.ENGSTRUCT.2024.117522. 
  9. Dietrich, J.C., Tanaka, S., Westerink, J.J., Dawson, C.N., Luettich, R.A., Zijlema, M., Holthuijsen, L.H., Smith, J.M., Westerink, L. G. and Westerink, H.J. (2012), "Performance of the unstructured-mesh, SWAN+ ADCIRC model in computing hurricane waves and surge", J. Sci. Comput., 52(2), 468-497. https://doi.org/10.1007/S10915-011-9555-6/METRICS. 
  10. Dong, W. (2002), "Engineering models for catastrophe risk and their application to insurance", Earthq. Eng. Eng. Vib., 1, 145-151. https://doi.org/https://doi.org/10.1007/s11803-002-0018-9. 
  11. FPHLM. (2023), Florida Public Hurricane Loss Model technical document. https://fchlpm.sbafla.com/media/ghll1ufp/2023_03_11_fphlm_2022_submission_document-1.pdf. 
  12. Francioli, M., Petrini, F. and Bontempi, F. (2023), "Structural robustness analysis of RC frames under seismic and blast chained loads scenarios", J. Build. Eng., 67, 105970. https://doi.org/10.1016/J.JOBE.2023.105970. 
  13. Geist, E.L., Lynett, P.J. and Chaytor, J.D. (2009), "Hydrodynamic modeling of tsunamis from the Currituck landslide", Marine Geology, 264(1-2), 41-52. https://doi.org/10.1016/J.MARGEO.2008.09.005. 
  14. Hamid, S.S., Pinelli, J.P., Chen, S.C. and Gurley, K. (2011), "Catastrophe model-based assessment of hurricane risk and estimates of potential insured losses for the State of Florida", Nat. Haz. Rev., 12(4), 171-176. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000050. 
  15. Hatzikyriakou, A. and Lin, N. (2016), "Impact of performance interdependencies on structural vulnerability: A systems perspective of storm surge risk to coastal residential communities", Reliability Eng. Syst. Safety, 158, 106-116. https://doi.org/10.1016/j.ress.2016.10.011. 
  16. Henderson, D.J. and Ginger, J.D. (2007), "Vulnerability model of an Australian high-set house subjected to cyclonic wind loading", Wind Struct., 10(3), 269-286. https://doi.org/10.12989/was.2007.10.3.269. 
  17. Holland, G.J. (1980), "An analytic model of the wind and pressure profiles in hurricanes", Month. Weather Rev., 108(8), 1212-1218. http://danida.vnu.edu.vn/cpis/files/Refs/TCs/0-An%20Analytic%20Model%20of%20the%20Wind%20and%20Pressure%20Profiles%20in%20Hurricanes%20Holland(1980).pdf. 
  18. Johnson, T., Pinelli, J.-P., Baheru, T., Chowdhury, A.G., Weekes, J. and Gurley, K. (2018), "Simulation of rain penetration and associated damage in buildings within a hurricane vulnerability model", Nat. Haz. Rev., 19(2), 04018004. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000288. 
  19. Kennedy, A., Copp, A., Florence, M., Gradel, A., Gurley, K., Janssen, M., Kaihatu, J., Krafft, D., Lynett, P., Owensby, M., Pinelli, J.-P., Prevatt, D. O., Rogers, S., Roueche, D. and Silver, Z. (2020), "Hurricane Michael in the area of Mexico beach, Florida", J. Waterway, Port, Coastal, Ocean Eng., 146(5). https://doi.org/10.1061/(asce)ww.1943-5460.0000590. 
  20. Knabb, R.D., Brown, D.P. and Rhome, J.R. (2006), Tropical Cyclone Report Hurricane Rita. https://www.nhc.noaa.gov/data/tcr/AL182005_Rita.pdf. 
  21. Knabb, R.D., Rhome, J.R. and Brown, D.P. (2005), Tropical Cyclone Report Hurricane Katrina. https://www.nhc.noaa.gov/data/tcr/AL122005_Katrina.pdf. 
  22. Li, Y., Ahuja, A. and Padgett, J.E. (2012), "Review of methods to assess, design for, and mitigate multiple hazards", J. Perform. Construct. Facilities, 26(1), 104-117. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000279/ASSET/FC216328-D77D-4CA5-9D36-394E19F7EEA9/ASSETS/IMAGES/LARGE/9.JPG. 
  23. Lu, Y., Zhang, L., He, Z., Feng, F. and Pan, F. (2021), "Wind-induced vibration fragility of outer-attached tower crane to super-tall buildings: A case study", Wind Struct., 32(5), 405-421. https://doi.org/10.12989/WAS.2021.32.5.405. 
  24. Luger, S.A. and Harris, R.L. (2010), "Modelling Tsunamis generated by earthquakes and submarine slumps using Mike 21", International MIKE by DHI Conference 2010. https://www.dhigroup.com/upload/publications/mike21/Luger_2010.pdf. 
  25. Ma, L., Christou, V. and Bocchini, P. (2021), "Framework for probabilistic simulation of power transmission network performance under hurricanes", Reliability Eng. Syst. Safety, 217, 108072. https://doi.org/10.1016/j.ress.2021.108072. 
  26. Mahmoudi, A., Nasrollahzadeh, K. and Jafari, M.A. (2021), "Probabilistic failure analysis of 400 kV transmission tower-line system subjected to wind and ice hazards", Wind Struct., 33(3), 251-264. https://doi.org/10.12989/was.2021.33.3.251. 
  27. Marks, F.D., Atlas, D. and Wills, P.T. (1993), "Probability-matched reflectivity-rainfall relations for a hurricane from aircraft observations", J. Appl. Meteorol. Climatol., 32(6), 1134-1141. https://doi.org/https://doi.org/10.1175/1520-0450(1993)032<1134:PMRRRF>2.0.CO;2. 
  28. Matyas, C.J. (2010), "Associations between the size of hurricane rain fields at landfall and their surrounding environments", Meteorol. Atmos. Phys., 106(3-4), 135-148. https://doi.org/10.1007/s00703-009-0056-1. 
  29. Michel-Kerjan, E., Hochrainer-Stigler, S., Kunreuther, H., Linnerooth-Bayer, J., Mechler, R., Muir-Wood, R., Ranger, N., Vaziri, P. and Young, M. (2013), "Catastrophe risk models for evaluating disaster risk reduction investments in developing countries", Risk Anal., 33(6). https://doi.org/10.1111/j.1539-6924.2012.01928.x. 
  30. Miller, B. (2018), 2017 was the costliest year for weatherl disasters by a long shot | CNN. https://www.cnn.com/2018/01/08/us/2017-costliestdisasters/index.html. 
  31. Ming, X., Xu, W., Li, Y., Du, J., Liu, B. and Shi, P. (2015), "Quantitative multi-hazard risk assessment with vulnerability surface and hazard joint return period", Stochastic Environ. Research Risk Assessment, 29(1), 35-44. https://doi.org/10.1007/S00477-014-0935-Y/FIGURES/4. 
  32. NOAA. (2023), Billion-Dollar Weather and Climate Disasters. https://www.ncei.noaa.gov/access/billions/. 
  33. Nofal, O.M. and Lindt, J. W. van de. (2020), "Probabilistic Flood Loss Assessment at the Community Scale: Case Study of 2016 Flooding in Lumberton, North Carolina", ASCE-ASME J. Risk Uncertainty Eng. Syst. Part A: Civil Eng., 6(2), 05020001. https://doi.org/10.1061/AJRUA6.0001060. 
  34. Nofal, O.M., van de Lindt, J.W., Do, T.Q., Yan, G., Hamideh, S., Cox, D.T. and Dietrich, J.C. (2021), "Methodology for regional multihazard hurricane damage and risk assessment", J. Struct. Eng., 147(11). https://doi.org/10.1061/(asce)st.1943-541x.0003144. 
  35. Paleo-Torres, A., Gurley, K., Pinelli, J.P., Baradaranshoraka, M., Zhao, M., Suppasri, A. and Peng, X. (2020), "Vulnerability of Florida residential structures to hurricane induced coastal flood", Eng. Struct., 220, 111004. https://doi.org/10.1016/J.ENGSTRUCT.2020.111004. 
  36. Petrini, F., Gkoumas, K., Rossi, C. and Bontempi, F. (2020), "Multi-hazard assessment of bridges in case of hazard chain: State of play and application to vehicle-pier collision followed by fire", Front. Built Environ., 6, 580854. https://doi.org/10.3389/FBUIL.2020.580854/BIBTEX. 
  37. Pinelli, J.-P., Pita, G., Gurley, K., Torkian, B., Hamid, S. and Subramanian, C. (2011), "Damage characterization: Application to Florida Public Hurricane Loss Model", Nat. Haz. Rev., 12(4), 190-195. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000051. 
  38. Pita, G., Pinelli, J.-P., Cocke, S., Gurley, K., Mitrani-Reiser, J., Weekes, J. and Hamid, S. (2012), "Assessment of hurricane-induced internal damage to low-rise buildings in the Florida Public Hurricane Loss Model", J. Wind Eng. Ind. Aerod., 104, 76-87. https://doi.org/10.1016/j.jweia.2012.03.023 
  39. Pita, G., Pinelli, J.-P., Gurley, K. and Mitrani-Reiser, J. (2015), "State of the art of hurricane vulnerability estimation methods: A review", Nat. Haz. Rev., 16(2), 04014022. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000153. 
  40. Pita, G.L., Pinelli, J.P., Gurley, K., Weekes, J., Cocke, S. and Hamid, S. (2016), "Hurricane vulnerability model for mid/high-rise residential buildings", Wind Struct., 23(5), 449-464. https://doi.org/10.12989/WAS.2016.23.5.449. 
  41. Pita, G.L., Pinelli, J.P., Gurley, K.R. and Hamid, S. (2013), "Hurricane vulnerability modeling: Development and future trends", J. Wind Eng. Ind. Aerod., 114, 96-105. https://doi.org/10.1016/J.JWEIA.2012.12.004. 
  42. Powell, M., Soukup, G., Cocke, S., Gulati, S., Morisseau-Leroy, N., Hamid, S., Dorst, N. and Axe, L. (2005), "State of Florida hurricane loss projection model: Atmospheric science component", J. Wind Eng. Ind. Aerod., 93(8), 651-674. https://doi.org/10.1016/J.JWEIA.2005.05.008. 
  43. Powell, M.D., Murillo, S., Dodge, P., Uhlhorn, E., Gamache, J., Cardone, V., Cox, A., Otero, S., Carrasco, N., Annane, B. and Fleur, R.S. (2010), "Reconstruction of Hurricane Katrina's wind fields for storm surge and wave hindcasting", Ocean Eng., 37(1), 26-36. https://doi.org/10.1016/J.OCEANENG.2009.08.014. 
  44. RMS (Risk Management Solutions). (2021), North Atlantic Hurricane Models. http://www.rms.com/. 
  45. Sim, V., Jung, W., Sim, V. and Jung, W. (2020), "Wind-induced fragility assessment of protruding sign structures", Wind Struct., 31(5), 381. https://doi.org/10.12989/WAS.2020.31.5.381. 
  46. Smith, A.B. (2023), 2022 U.S. billion-dollar weather and climate disasters in historical context | NOAA Climate.gov. https://www.climate.gov/news-features/blogs/2022-us-billion-dollar-weather-and-climate-disasters-historical-context. 
  47. Tilloy, A., Malamud, B.D., Winter, H. and Joly-Laugel, A. (2019), "A review of quantification methodologies for multi-hazard interrelationships", Earth-Sci. Rev., 196, 102881 https://doi.org/10.1016/j.earscirev.2019.102881. 
  48. Tomiczek, T., Kennedy, A. and Rogers, S. (2014), "Collapse limit state fragilities of wood-framed residences from storm surge and waves during hurricane Ike", J. Waterway, Port, Coastal, Ocean Eng., 140(1), 43-55. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000212/ASSET/466D5D99-F32C-4AB2-BDAAB1584B2C2627/ASSETS/IMAGES/LARGE/FIGURE12.JPG. 
  49. Wang, D., Li, S., Sun, C., Huang, G. and Yang, Q. (2021), "Assessment of wind-induced fragility of transmission towers under quasi-static wind load", Wind Struct., 33(4), 343-352. https://doi.org/10.12989/was.2021.33.4.343. 
  50. Wei, Z., Pinelli, J.-P. and Gurley, K. (2024), "Component-based hurricane vulnerability model for mid/high-rise commercial residential buildings", Int. J. Dis. Risk Reduction, 100, 104222. https://doi.org/10.1016/j.ijdrr.2023.104222. 
  51. Wei, Z., Pinelli, J.-P., Gurley, K., Hamid, S. and Flannery, G. (2024), "Component-based estimation of recovery time and time-related expenses after hurricane events", Front. Built Environ., 9, 1295619. https://doi.org/10.3389/fbuil.2023.1295619. 
  52. Zaghi, A.E., Padgett, J.E., Bruneau, M., Barbato, M., Li, Y., Mitrani-Reiser, J. and McBride, A. (2016), "Establishing common nomenclature, characterizing the problem, and identifying future opportunities in multihazard design", J. Struct. Eng., 142(12), H2516001. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001586/ASSET/FE098C96-6A53-42CB-802B1BBFC0157F6B/ASSETS/IMAGES/LARGE/FIGURE2.JPG.