DOI QR코드

DOI QR Code

An approximate method for aerodynamic optimization of horizontal axis wind turbine blades

  • Ying Zhang (School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology) ;
  • Liang Li (School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology) ;
  • Long Wang (School of Mechanical Engineering, Anhui University of Science and Technology) ;
  • Weidong Zhu (Department of Mechanical Engineering, University of Maryland, Baltimore County) ;
  • Yinghui Li (School of Mechanics and Aerospace Engineering, Southwest Jiaotong University) ;
  • Jianqiang Wu (School of Mechanics and Optoelectronic Physics, Anhui University of Science and Technology)
  • 투고 : 2023.06.15
  • 심사 : 2024.03.11
  • 발행 : 2024.05.25

초록

This paper presents a theoretical method to deal with the aerodynamic performance and pitch optimization of the horizontal axis wind turbine blades at low wind speeds. By considering a blade element, the functional relationship among the angle of attack, pitch angle, rotational speed of the blade, and wind speed is derived in consideration of a quasi-steady aerodynamic model, and aerodynamic loads on the blade element are then obtained. The torque and torque coefficient of the blade are derived by using integration. A polynomial approximation is applied to functions of the lift and drag coefficients for the symmetric and asymmetric airfoils respectively, where specific expressions of aerodynamic loads as functions of the angle of attack (which is a function of pitch angle) are obtained. The pitch optimization problem is investigated by considering the maximum value problem of the instantaneous torque of a blade as a function of pitch angle. Dynamic pitch laws for HAWT blades with either symmetric or asymmetric airfoils are derived. Influences of parameters including inflow ratio, rotational speed, azimuth, and wind speed on torque coefficient and optimal pith angle are discussed.

키워드

과제정보

This work has been supported by the National Natural Science Foundation of China (Grant Nos. 11902002 and 51705002), the Sichuan Provincial Natural Science Foundation (Grant No. 2022NSFSC0275), and the Projects of Education Department of Anhui Province (Grant Nos. 2020xsxxkc149, S202210361197 and S202110361198).

참고문헌

  1. AbuGazia, M., El Damatty, A., Dai, K., Lu, W. and Ezami, N. (2023). "Evaluation of horizontal-axis-three-blade wind turbines", Wind Struct., 37(6), 413. https://doi.org/10.12989/was.2023.37.6.413.
  2. Akbari, V., Naghashzadegan, M., Kouhikamali, R., Afsharpanah, F. and Yaici, W. (2022), "Multi-objective optimization of a small horizontal-axis wind turbine blade for generating the maximum startup torque at low wind speeds", Machines, 10(9), 785. https://doi.org/10.3390/machines10090785.
  3. Al-Abadi, A., Ertunc, O., Beyer, F. and Delgado, A. (2014), "Torque-matched aerodynamic shape optimization of HAWT rotor", Journal of Physics: Conference Series, 555(1), 012003. https://doi.org/10.1088/1742-6596/555/1/012003.
  4. Alkhabbaz, A., Yang, H.S., Weerakoon, A.S. and Lee, Y.H. (2021), "A novel linearization approach of chord and twist angle distribution for 10 kW horizontal axis wind turbine", Renew. Energy, 178, 1398-1420. https://doi.org/10.1016/j.renene.2021.06.077.
  5. Ashrafi, Z.N., Ghaderi, M. and Sedaghat, A. (2015), "Parametric study on off-design aerodynamic performance of a horizontal axis wind turbine blade and proposed pitch control", Energy Conversion Management, 93, 349-356. https://doi.org/10.1016/j.enconman.2015.01.048.
  6. Bai, C.J., Hsiao, F.B., Li, M.H., Huang, G.Y. and Chen, Y.J. (2013), "Design of 10 kW horizontal-axis wind turbine (HAWT) blade and aerodynamic investigation using numerical simulation", Procedia Eng., 67, 279-287. https://doi.org/10.1016/j.proeng.2013.12.027.
  7. Bavanish, B. and Thyagarajan, K. (2015) "Optimization of power coefficient on a horizontal axis wind turbine using bem theory", Renew. Sustain. Energy Rev., 26, 169-182. https://doi.org/10.1016/j.rser.2013.05.009.
  8. Benini, E. and Toffolo, A. (2002), "Optimal design of horizontal-axis wind turbines using blade-element theory and evolutionary computation", J. Sol. Energy Eng, 124, 357-363. https://doi.org/10.1115/1.1510868.
  9. Biegel, B., Juelsgaard, M., Kraning, M., Boyd, S. and Stoustrup, J. (2011), "Wind turbine pitch optimization", 2011 IEEE International Conference on Control Applications (CCA). IEEE, 1327-1334. https://doi.org/10.1109/CCA.2011.6044383.
  10. Boukhezzar, B. and Siguerdidjane, H. (2010), "Nonlinear control of a variable-speed wind turbine using a two-mass model", IEEE Transactions Energy Conversion, 26(1), 149-162. https://doi.org/10.1109/TEC.2010.2090155.
  11. Chaudhary, M.K. and Roy, A. (2015), "Design & optimization of a small wind turbine blade for operation at low wind speed", World J. Eng., 12(1), 83-94. https://doi.org/10.1260/1708-5284.12.1.83.
  12. Chavero-Navarrete, E., Trejo-Perea, M., Jauregui-Correa, J.C., Carrillo-Serrano, R.V., Ronquillo-Lomeli, G. and Rios-Moreno, J.G. (2021), "Pitch angle optimization for small wind turbines based on a hierarchical fuzzy-PID controller and anticipated wind speed measurement", Appl. Sci., 11(4), 1683. https://doi.org/10.3390/app11041683.
  13. de, Freitas Pinto R.L.U. and Goncalves, B.P.F. (2017), "A revised theoretical analysis of aerodynamic optimization of horizontal-axis wind turbines based on BEM theory", Renew. Energy, 105, 625-636. https://doi.org/10.1016/j.renene.2016.12.076.
  14. De, Vries O. (1983), "On the theory of the horizontal-axis wind turbine", Annual Rev. Fluid Mech., 15, 77-96. https://doi.org/10.1146/annurev.fl.15.010183.000453.
  15. Debbache, M., Hazmoune, M., Derfouf, S., Ciupageanu, D.A. and Lazaroiu, G. (2021), "Wind blade twist correction for enhanced annual energy production of wind turbines", Sustainability, 13 (12), 6931. https://doi.org/10.3390/su13126931.
  16. El-Fahham, I., Abdelshahid, G. and Mokhiamar, O. (2021), "Pitch angle modulation of the horizontal and vertical axes wind turbine using fuzzy logic control", Processes, 9(8), 1337. https://doi.org/10.3390/pr9081337.
  17. El-Okda, Y., Emeara, M.S., Abdelkarim, N., Adref, K. and Hajjar, H.A. (2020), "Performance of a small horizontal axis wind turbine with blade pitching", In 2020 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 1-5. https://doi.org/10.1109/ASET48392.2020.9118196.
  18. Gao, R and Gao, Z. (2016), "Pitch control for wind turbine systems using optimization, estimation and compensation", Renew. Energy, 91, 501-515. https://doi.org/10.1016/j.renene.2016.01.057.
  19. Gui, X., Xue, H., Su, S., Hu, Z. and Xu, Y. (2022), "Study on aerodynamic performance of mine air duct horizontal axis wind turbine based on breeze power generation", Energy Sci. Eng., 10(4), 1132-1152. https://doi.org/10.1002/ese3.1081.
  20. Karthikeyan, N., Murugavel, K.K., Kumar, S.A. and Rajakumar, S. (2015), "Review of aerodynamic developments on small horizontal axis wind turbine blade", Renew. Sustain. Energy Rev., 42, 801-822. https://doi.org/10.1016/j.rser.2014.10.086.
  21. Khlaifat, N., Altaee, A., Zhou, J., Huang, Y. and Braytee, A. (2022), "Optimization of a small wind turbine for a rural area: a case study of Deniliquin", Energies, 13(9), 2292. https://doi.org/10.3390/en13092292.
  22. Li, H., Shi, K.L. and McLaren, P.G. (2005), "Neural-network-based sensorless maximum wind energy capture with compensated power coefficient", IEEE Transact. Ind. Appl., 41(6), 1548-1556. https://doi.org/10.1109/TIA.2005.858282.
  23. Li, L., Chopra, I., Zhu, W.D., and Yu, M.L. (2021), "Performance analysis and optimization of a vertical-axis wind turbine with a high tip speed ratio", Energies, 14(4), 996. https://doi.org/10.3390/en14040996.
  24. Li, L., Li, Y. H., Liu, Q.K and Lv, H.W. (2014), "A mathematical model for horizontal axis wind turbine blades", Appl. Mathem. Modelling, 38(11-12), 2695-2715. https://doi.org/10.1016/j.apm.2013.10.068.
  25. Lopez, J.P., Hangan, H. and El Damatty, A. (2022), "Experimental study of the loads induced by a large-scale tornado simulation on a HAWT model", Wind Struct., 34(3), 303-312. https://doi.org/10.12989/was.2022.34.3.303.
  26. Maalawi, K. and Badr, M. (2003), "A practical approach for selecting optimum wind rotors", Renew. Energy, 28, 803-822. https://doi.org/10.1016/S0960-1481(02)00028-9.
  27. Maalawi, K.Y. and Badawy, M.T. (2001), "A direct method for evaluating performance of horizontal axis wind turbines", Renew. Sustain. Energy Rev., 5(2), 175-190. https://doi.org/10.1016/S1364-0321(00)00017-4.
  28. Munteanu, I., Bacha, S., Bratcu, A.I., Guiraud, J. and Roye, D. (2008), "Energy-reliability optimization of wind energy conversion systems by sliding mode control", IEEE Transact. Energy Conversion, 23(3), 975-985. https://doi.org/10.1109/TEC.2008.917102.
  29. Nash, R., Nouri, R. and Vasel-Be-Hagh, A. (2021), "Wind turbine wake control strategies: a review and concept proposal", Energy Conversion Manage., 245, 114581. https://doi.org/10.1016/j.enconman.2021.114581.
  30. Pourrajabian, A., Ebrahimi, R. and Mirzaei, M. (2014), "Applying micro scales of horizontal axis wind turbines for operation in low wind speed regions", Energy Conversion Manage., 87, 119-127. https://doi.org/10.1016/j.enconman.2014.07.003.
  31. Pourrajabian, A., Rahgozar, S., Dehghan, M. and Wood, D. (2023), "A comprehensive multi-objective optimization study for the aerodynamic noise mitigation of a small wind turbine", Eng. Anal. Bound. Elements, 155, 553-564. https://doi.org/10.1016/j.enganabound.2023.06.035.
  32. Rajakumar, S. and Ravindran, D. (2012), "Iterative approach for optimising coefficient of power, coefficient of lift and drag of wind turbine rotor", Renew. Energy, 38(1), 83-93. https://doi.org/10.1016/j.renene.2011.07.006.
  33. Reddy, P. and Mohan, P.R. (2022), "Micro-scale horizontal-axis wind turbines get new air foil", J. Contemporary Issues Business Govern., 25(1), 364-372. https://doi.org/10.47750/cibg.2019.25.01.034.
  34. Russo, S., Contestabile, P., Bardazzi, A., Leone, E., Iglesias, G. Tomasicchio, G.R. and Vicinanza, D. (2021), "Dynamic loads and response of a spar buoy wind turbine with pitch-controlled rotating blades: An experimental study", Energies, 14(12), 3598. https://doi.org/10.3390/en14123598.
  35. Sriti, M. (2018), "Improved blade element momentum theory (BEM) for predicting the aerodynamic performances of horizontal Axis wind turbine blade (HAWT)", Technische Mechanik-European Journal of Engineering Mechanics, 38(2), 191-202. https://doi.org/10.24352/UB.OVGU-2018-028.
  36. Takeyeldein, M.M., Ishak, I.S. and Lazim, T.M. (2022), "Wind-lens turbine design for low wind speed", Wind Struct., 35(3), 147-155. https://doi.org/10.12989/WAS.2022.35.3.147.
  37. Thapa, M. and Missoum, S. (2022), "Surrogate-based stochastic optimization of horizontal-axis wind turbine composite blades", Struct. Multidiscipl. Optimiz., 65(2), 41. https://doi.org/10.1007/s00158-021-03114-8.
  38. Tian, W.L., Mao, Z.Y. and Ding, H. (2018), "Design, test and numerical simulation of a low-speed horizontal axis hydrokinetic turbine", Int. J. Naval Architect. Ocean Eng., 10(6), 782-793. https://doi.org/10.1016/j.ijnaoe.2017.10.006.
  39. Tomasicchio, G.R., Vicinanza, D., Belloli, M., Vire, A.C., Monbaliu, J., Taruffi, F., Pustina, L., Leone, E. and Russo, S. (2020), "Physical model tests on spar buoy for offshore floating wind energy conversion", Italian J. Eng. Geology Environ., 1, 129-143. https://doi.org/10.4408/IJEGE.2020-01.S-15.
  40. Vaz, J.R.P., Pinho, J.T. and Mesquita, A.L.A. (2011), "An extension of BEM method applied to horizontal-axis wind turbine design", Renew. Energy, 36, 1734-1740. https://doi.org/10.1016/j.renene.2010.11.018.
  41. Venkaiah, P. and Sarkar, B.K. (2019), "Hydraulically actuated horizontal axis wind turbine pitch control by model free adaptive controller", Renew. Energy, 147, 55-68. https://doi.org/10.1016/j.renene.2019.08.127.
  42. Wang, H., Jiang, X., Chao, Y., Li, Q., Li, M., Chen, T. and Ouyang, W. (2021), "Numerical optimization of horizontal-axis wind turbine blades with surrogate model", Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 235(5), 1173-1186. https://doi.org/10.1177/0957650920976743.
  43. Wichser, C. and Klink, K. (2008), "Low wind speed turbines and wind power potential in Minnesota", USA. Renew. Energy, 33(8), 1749-1758. https://doi.org/10.1016/j.renene.2007.11.006.
  44. Yurdusev, M., Ata, R. and Cetin, N. (2006), "Assessment of optimum tip speed ratio in wind turbines using artificial neural networks", Energy, 31, 2153-2161. https://doi.org/10.1016/j.energy.2005.09.007.
  45. Zhu, J., Cai, X. and Gu, R. (2016), "Aerodynamic and structural integrated optimization design of horizontal-axis wind turbine blades", Energies, 9(2), 66. https://doi.org/10.3390/en9020066.