DOI QR코드

DOI QR Code

Diagnostic Performance Using a Combination of MRI Findings for Evaluating Cognitive Decline

인지기능 저하평가를 위한 MR 영상 소견 조합의 진단능

  • Jin Young Byun (Department of Radiology, The Catholic University of Korea, College of Medicine, Yeouido St. Mary's Hospital) ;
  • Min Kyoung Lee (Department of Radiology, The Catholic University of Korea, College of Medicine, Yeouido St. Mary's Hospital) ;
  • So Lyung Jung (Department of Radiology, The Catholic University of Korea, College of Medicine, Yeouido St. Mary's Hospital)
  • 변진영 (가톨릭대학교 의과대학 여의도성모병원 영상의학과) ;
  • 이민경 (가톨릭대학교 의과대학 여의도성모병원 영상의학과) ;
  • 정소령 (가톨릭대학교 의과대학 여의도성모병원 영상의학과)
  • Received : 2023.06.01
  • Accepted : 2023.07.08
  • Published : 2024.01.01

Abstract

Purpose We investigated potentially promising imaging findings and their combinations in the evaluation of cognitive decline. Materials and Methods This retrospective study included 138 patients with subjective cognitive impairments, who underwent brain MRI. We classified the same group of patients into Alzheimer's disease (AD) and non-AD groups, based on the neuropsychiatric evaluation. We analyzed imaging findings, including white matter hyperintensity (WMH) and cerebral microbleeds (CMBs), using the Kruskal-Wallis test for group comparison, and receiver operating characteristic (ROC) curve analysis for assessing the diagnostic performance of imaging findings. Results CMBs in the lobar or deep locations demonstrated higher prevalence in the patients with AD compared to those in the non-AD group. The presence of lobar CMBs combined with periventricular WMH (area under the ROC curve [AUC] = 0.702 [95% confidence interval: 0.599-0.806], p < 0.001) showed the highest performance in differentiation of AD from non-AD group. Conclusion Combinations of imaging findings can serve as useful additive diagnostic tools in the assessment of cognitive decline.

목적 인지기능 저하를 진단하기 위해서 자기공명영상을 이용한 영상 소견의 진단능을 평가하였다. 대상과 방법 총 138명의 주관적인 인기지능 저하를 호소하며, MRI 검사를 시행한 환자를 대상으로 하였다. 이 환자 그룹은 신경정신학적 평가를 통해 알츠하이머군과 비알츠하이머군으로 분류되었다. 우리는 이들의 white matter hyperintensity와 cerebral microbleed를 평가하였으며, Kruskal- Wallis test를 통해 그룹 간의 비교를, receiver operating characteristic (이하 ROC)를 통해 영상학적 소견의 진단능을 평가하였다. 결과 인지기능 정상인 경우와 경도인지장애 환자와 비교해서 알츠하이머 환자에서 엽 혹은 심부 미세출혈이 빈번하게 관찰되었으며, 심한 심부 혹은 뇌실주위, 전체 백질 신호강도 또한 인지기능 정상에 비해서 알츠하이머 환자에서 많이 관찰되었다. 알츠하이머 환자와 다른 환자 그룹(정상 혹은 경도인지장애)을 비교할 때 엽미세출혈과 뇌실주위 뇌백질 신호강도 증가가 같이 존재하는 경우 가장 높은 진단능을 보였다(area under the ROC curve = 0.702[95% 신뢰구간: 0.599-0.806], p < 0.001). 결론 자기공명영상에서 확인한 영상 소견을 바탕으로 인지기능 저하의 진단능을 평가하였다. 인지기능 저하의 진단에 있어서 엽미세출혈과 뇌실주위 뇌백질 신호강도 증가가 같이 존재하는 경우에 높은 진단능을 보였으며, 이러한 소견을 바탕으로 인지기능 저하를 진단하는 데 있어 영상 소견이 도움을 줄 수 있을 것이라는 가능성을 보여주었다.

Keywords

References

  1. Blazer DG, Yaffe K, Karlawish J. Cognitive aging: a report from the institute of medicine. JAMA 2015;313:2121-2122 
  2. Mintun MA, Lo AC, Duggan Evans C, Wessels AM, Ardayfio PA, Andersen SW, et al. Donanemab in early Alzheimer's disease. N Engl J Med 2021;384:1691-1704 
  3. Busche MA, Hyman BT. Synergy between amyloid-β and tau in Alzheimer's disease. Nat Neurosci 2020;23:1183-1193 
  4. Demattos RB, Lu J, Tang Y, Racke MM, Delong CA, Tzaferis JA, et al. A plaque-specific antibody clears existing β-amyloid plaques in Alzheimer's disease mice. Neuron 2012;76:908-920 
  5. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer's disease at 25 years. EMBO Mol Med 2016;8:595-608 
  6. Petersen RC, Lopez O, Armstrong MJ, Getchius TSD, Ganguli M, Gloss D, et al. Practice guideline update summary: mild cognitive impairment: report of the guideline development, dissemination, and implementation subcommittee of the American Academy of Neurology. Neurology 2018;90:126-135 
  7. Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189-198 
  8. Steinbart D, Yaakub SN, Steinbrenner M, Guldin LS, Holtkamp M, Keller SS, et al. Automatic and manual segmentation of the piriform cortex: method development and validation in patients with temporal lobe epilepsy and Alzheimer's disease. Hum Brain Mapp 2023;44:3196-3209 
  9. Chandra A, Dervenoulas G, Politis M; Alzheimer's Disease Neuroimaging Initiative. Magnetic resonance imaging in Alzheimer's disease and mild cognitive impairment. J Neurol 2019;266:1293-1302 
  10. Mueller SG, Schuff N, Weiner MW. Evaluation of treatment effects in Alzheimer's and other neurodegenerative diseases by MRI and MRS. NMR Biomed 2006;19:655-668 
  11. Rowley PA, Samsonov AA, Betthauser TJ, Pirasteh A, Johnson SC, Eisenmenger LB. Amyloid and tau PET imaging of Alzheimer disease and other neurodegenerative conditions. Semin Ultrasound CT MR 2020;41:572-583 
  12. Cannistraro RJ, Badi M, Eidelman BH, Dickson DW, Middlebrooks EH, Meschia JF. CNS small vessel disease: a clinical review. Neurology 2019;92:1146-1156 
  13. Li Q, Yang Y, Reis C, Tao T, Li W, Li X, et al. Cerebral small vessel disease. Cell Transplant 2018;27:1711-1722 
  14. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol 2013;12:483-497 
  15. Shi Y, Wardlaw JM. Update on cerebral small vessel disease: a dynamic whole-brain disease. Stroke Vasc Neurol 2016;1:83-92 
  16. Patel B, Markus HS. Magnetic resonance imaging in cerebral small vessel disease and its use as a surrogate disease marker. Int J Stroke 2011;6:47-59 
  17. Norrving B. Evolving concept of small vessel disease through advanced brain imaging. J Stroke 2015;17:94-100 
  18. Graff-Radford J, Arenaza-Urquijo EM, Knopman DS, Schwarz CG, Brown RD, Rabinstein AA, et al. White matter hyperintensities: relationship to amyloid and tau burden. Brain 2019;142:2483-2491 
  19. Cordonnier C, van der Flier WM, Sluimer JD, Leys D, Barkhof F, Scheltens P. Prevalence and severity of microbleeds in a memory clinic setting. Neurology 2006;66:1356-1360 
  20. Noh Y, Lee Y, Seo SW, Jeong JH, Choi SH, Back JH, et al. A new classification system for ischemia using a combination of deep and periventricular white matter hyperintensities. J Stroke Cerebrovasc Dis 2014;23:636-642 
  21. Lee JH, Lee KU, Lee DY, Kim KW, Jhoo JH, Kim JH, et al. Development of the Korean version of the consortium to establish a registry for Alzheimer's disease assessment packet (CERAD-K): clinical and neuropsychological assessment batteries. J Gerontol B Psychol Sci Soc Sci 2002;57:P47-P53 
  22. Poels MM, Ikram MA, van der Lugt A, Hofman A, Niessen WJ, Krestin GP, et al. Cerebral microbleeds are associated with worse cognitive function: the Rotterdam scan study. Neurology 2012;78:326-333 
  23. Qiu C, Cotch MF, Sigurdsson S, Jonsson PV, Jonsdottir MK, Sveinbjrnsdottir S, et al. Cerebral microbleeds, retinopathy, and dementia: the AGES-Reykjavik study. Neurology 2010;75:2221-2228 
  24. Takashima Y, Mori T, Hashimoto M, Kinukawa N, Uchino A, Yuzuriha T, et al. Clinical correlating factors and cognitive function in community-dwelling healthy subjects with cerebral microbleeds. J Stroke Cerebrovasc Dis 2011;20:105-110 
  25. Yakushiji Y, Noguchi T, Hara M, Nishihara M, Eriguchi M, Nanri Y, et al. Distributional impact of brain microbleeds on global cognitive function in adults without neurological disorder. Stroke 2012;43:1800-1805 
  26. Akoudad S, Wolters FJ, Viswanathan A, de Bruijn RF, van der Lugt A, Hofman A, et al. Association of cerebral microbleeds with cognitive decline and dementia. JAMA Neurol 2016;73:934-943 
  27. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ 2010;341:c3666 
  28. Lee JH, Olichney JM, Hansen LA, Hofstetter CR, Thal LJ. Small concomitant vascular lesions do not influence rates of cognitive decline in patients with Alzheimer disease. Arch Neurol 2000;57:1474-1479 
  29. Wardlaw JM. Blood-brain barrier and cerebral small vessel disease. J Neurol Sci 2010;299:66-71 
  30. Duering M, Csanadi E, Gesierich B, Jouvent E, Herve D, Seiler S, et al. Incident lacunes preferentially localize to the edge of white matter hyperintensities: insights into the pathophysiology of cerebral small vessel disease. Brain 2013;136:2717-2726 
  31. Hommet C, Mondon K, Constans T, Beaufils E, Desmidt T, Camus V, et al. Review of cerebral microangiopathy and Alzheimer's disease: relation between white matter hyperintensities and microbleeds. Dement Geriatr Cogn Disord 2012;32:367-378 
  32. Shi Y, Thrippleton MJ, Makin SD, Marshall I, Geerlings MI, de Craen AJM, et al. Cerebral blood flow in small vessel disease: a systematic review and meta-analysis. J Cereb Blood Flow Metab 2016;36:1653-1667 
  33. Zhang CE, Wong SM, Uiterwijk R, Backes WH, Jansen JFA, Jeukens CRLPN, et al. Blood-brain barrier leakage in relation to white matter hyperintensity volume and cognition in small vessel disease and normal aging. Brain Imaging Behav 2019;13:389-395 
  34. Holland CM, Smith EE, Csapo I, Gurol ME, Brylka DA, Killiany RJ, et al. Spatial distribution of white-matter hyperintensities in Alzheimer disease, cerebral amyloid angiopathy, and healthy aging. Stroke 2008;39:1127-1133 
  35. Hartz AM, Bauer B, Soldner EL, Wolf A, Boy S, Backhaus R, et al. Amyloid-β contributes to blood-brain barrier leakage in transgenic human amyloid precursor protein mice and in humans with cerebral amyloid angiopathy. Stroke 2012;43:514-523 
  36. Wardlaw JM, Smith EE, Biessels GJ, Cordonnier C, Fazekas F, Frayne R, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013;12:822-838 
  37. Rizvi B, Narkhede A, Last BS, Budge M, Tosto G, Manly JJ, et al. The effect of white matter hyperintensities on cognition is mediated by cortical atrophy. Neurobiol Aging 2018;64:25-32 
  38. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010;9:689-701 
  39. De Silva TM, Miller AA. Cerebral small vessel disease: targeting oxidative stress as a novel therapeutic strategy? Front Pharmacol 2016;7:61 
  40. Wu YT, Prina AM, Brayne C. The association between community environment and cognitive function: a systematic review. Soc Psychiatry Psychiatr Epidemiol 2015;50:351-362