DOI QR코드

DOI QR Code

3차원 수치모의 실험을 통한 진해·마산만의 계절별 해수순환과 염하구 특성

Seasonal Circulation and Estuarine Characteristics in the Jinhae and Masan Bay from Three-Dimensional Numerical Experiments

  • 김지하 (국립기상과학원 예보연구부 ) ;
  • 최병주 (전남대학교 해양학과 ) ;
  • 최재성 (전남대학교 해양학과 ) ;
  • 하호경 (인하대학교 해양과학과 )
  • JIHA KIM (Forecast Research Department, National Institute of Meteorological Science) ;
  • BYOUNG-JU CHOI (Department of Oceanography, Chonnam National University) ;
  • JAE-SUNG CHOI (Department of Oceanography, Chonnam National University) ;
  • HO KYUNG HA (Department of Ocean Sciences, Inha University)
  • 투고 : 2023.11.21
  • 심사 : 2024.05.16
  • 발행 : 2024.05.31

초록

진해·마산만에 대한 연구는 그동안 해수순환, 조석, 조류, 적조, 수질, 빈산소 환경을 주제로 많이 연구되었으나 주로 단기간 동안 일어나는 해양현상에 대해 연구가 수행되었으며, 만 전체적인 해수순환을 일으키는 물리적 기작을 자세히 살펴본 연구는 부족했다. 오염 물질의 이동과 확산 같은 현상은 주로 계절별로 변동성이 크기 때문에, 이 연구에서는 진해·마산만 해역의 해수순환이 계절적으로 어떻게 변동하는지를 파악하고자 하였다. 이를 위하여 3차원 해양 순환 모델을 이용하여 2016년부터 2018년까지 진해·마산만의 해수순환을 수치모의하고, 여름철과 겨울철 해수순환을 표층, 중층, 저층에 대하여 살펴보았다. 또한 조석, 바람, 담수 유입에 대한 민감도 실험을 수행하여 각 요인들이 해수 유동에 미치는 영향을 분석하였다. 진해·마산만의 해수순환은 가덕수도 저층에서 대한해협의 해수가 유입되고, 표층에서 진해·마산만의 해수가 유출되는 대류성 염하구 순환이 일어난다. 가덕수도를 통해 교환되는 해수의 순환은 크게 진해만 동부해역과 진해만 서부해역으로 나누어져 일어난다. 각 해역의 수로 방향을 기준으로 해수 수송량을 계산하였을 때, 진해만 동부해역의 남북방향 해수 교환 수송량은 진해만 서부해역에서 일어나는 동서방향 해수 교환량보다 겨울철에는 2.3배, 여름철에는 1.4배 크다. 진해만 서부해역은 계절별로 작용하는 힘들의 균형이 변화하여 해수순환 특성이 계절에 따라 크게 다르다. 겨울철에는 북서풍이 만드는 전단응력과 해수면 기울기의 영향으로 표층 해류가 남쪽으로, 저층 해류는 북쪽으로 흐르는 남북방향 대류성 순환이 강화된다. 반면, 남서풍이 부는 여름철에는 바람 응력에 의해 표층 해수가 동쪽으로 유출되고, 또한 남동쪽 해수면이 높아 북쪽 방향 순압성 압력경도력이 커져 동쪽 방향 유속이 강화된다. 저층에서는 밀도 구배가 커져 경압성 압력경도력이 남쪽으로 크게 작용하여 지형류 균형에 의해 가덕수도의 해수가 서쪽으로 강하게 유입하는 동서방향 대류성 순환이 겨울철보다 26% 강화된다. 진해만 서부의 대류성 순환은 겨울과 여름 모두 조류와 바람의 영향을 크게 받는다. 진해만 동부해역과 마산만에서는 모든 계절에 표층에서는 해수가 외해로 유출되고, 저층에서는 해수가 만 안쪽으로 유입되는 전형적인 염하구 순환을 보였다. 겨울철에는 바람과 담수유입이, 여름철에는 조류의 영향이 남북방향 염하구 순환 규모에 크게 기여하였다. 진해만 동부해역에는 지형의 영향을 받아 형성된 조석 잔차류도 뚜렷하다. 이 연구에서 제시한 진해·마산만의 계절별 해수순환 특성은 이 해역의 오염물질 확산, 여름철 빈산소수괴의 형성 기작 파악, 적조 생물의 유입과 유출을 이해하는 데 도움이 될 것으로 기대된다.

Circulation, tides, currents, harmful algal blooms, water quality, and hypoxic conditions in Jinhae-Masan Bay have been extensively studied. However, these previous studies primarily focused on short-term variations, and there was limited detailed investigation into the physical mechanisms responsible for ocean circulation in the bays. Oceanic processes in the bays, such as pollutant dispersal, changes on a seasonal time scale. Therefore, this study aimed to understand how the circulation in Jinhae-Masan Bay varies seasonally and to examine the effects of tides, winds, and river discharges on regional ocean circulation. To achieve this, a three-dimensional ocean circulation model was used to simulate circulation patterns from 2016 to 2018, and sensitivity experiments were conducted. This study reveals that convective estuarine circulation develops in Jinhae and Masan Bays, characterized by the inflow of deep oceanic water from the Korea Strait through Gadeoksudo, while surface water flows outward. This deep water intrusion divides into northward and westward branches. In this study, the volume transport was calculated along the direction of bottom channels in each region. The meridional water exchange in the eastern region of Jinhae Bay is 2.3 times greater in winter and 1.4 times greater in summer compared to that of zonal exchange in the western region. In the western region of Jinhae Bay, the circulation pattern varies significantly by season due to changes in the balance of forces. During winter, surface currents flow southward and bottom currents flow northward, strengthening the north-south convective circulation due to the combined effects of northwesterly winds and the slope of the sea surface. In contrast, during summer, southwesterly winds cause surface seawater to flow eastward, and the elevated sea surface in the southeastern part enhances northward barotropic pressure gradient intensifying the eastward surface flow. The density gradient and southward baroclinic pressure gradient increase in the lower layer, causing a strong westward inflow of seawater from Gadeoksudo, enhancing the zonal convective circulation by 26% compared to winter. The convective circulation in the western Jinhae Bay is significantly influenced by both tidal current and wind during both winter and summer. In the eastern Jinhae Bay and Masan Bay, surface water flows outward to the open sea in all seasons, while bottom water flows inward, demonstrating a typical convective estuarine circulation. In winter, the contributions of wind and freshwater influx are significant, while in summer, the influence of mixing by tidal currents plays a major role in the north-south convective circulation. In the eastern Jinhae Bay, tidally driven residual circulation patterns, influenced by the local topography, are distinct. The study results are expected to enhance our understanding of pollutant dispersion, summer hypoxic events, and the abundance of red tide organisms in these bays.

키워드

과제정보

이 연구는 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 시행된 "해양 미세플라스틱에 의한 환경 위해성 연구"의 일부입니다. 또한 이 논문은 기상청 국립기상과학원(현업 해양예측시스템 개발, KMA2018-00420)의 지원을 받았습니다.

참고문헌

  1. Arakawa, A. and V.R. Lamb, 1977. Computational design of the basic dynamical processes of the UCLA general circulation model. General Circulation Models of the Atmosphere, Methods in Computational Physics, edited by Chang, J., Berlin, pp. 173-265.
  2. Bae, S.W., K.D. Cho, D.S. Kim and K.W. Cho, 1997. Circulation experiment of the Chinhae Bay using a three-dimensional diagnostic numerical Model. Bull. Korean Soc. Fish. Tech., 33(4): 360-369.
  3. Chen, C. and R.C. Beardsley, 1995. A numerical study of stratified tidal rectification over finite-amplitude banks, I, Symmetric banks. J. Phys. Oceanogr., 25: 2090-2110.
  4. Choi, M.H., T.G. Ryu and D.S. Kim, 2016. A study of distribution of jellyfish by particle numerical experiment in Masan Bay. J. Korean Soc. Mar. Environ. Safety, 22(4): 335-343.
  5. Choo, H.S., 2021. Tide and tidal current around the sea route of Jinhae and Masan passages. J. Korean Soc. Fish. Ocean Tech., 57(1): 45-56.
  6. Fairall, C.W., E.F. Bradley, D.P. Rogers, J.B. Edson and G.S. Young, 1996. Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J. Geophys. Res., 101(C2): 3747-3764.
  7. Geyer, W.R. and P. MacCready, 2014. The estuarine circulation. Annual review of fluid mechanics, 46: 175-197.
  8. Jung, K.Y., Y.J. Ro and B.J. Kim, 2013. Characteristics of tidal current and tidal residual current in the Chunsu Bay, Yellow Sea, Korea based on numerical modeling experiments. J. Korean Soc. Coastal and Ocean Eng., 25(4), 207-218.
  9. Jung, T.S., 1996a. Three-dimensional numerical modelling of tidal currents in Masan-Jinhae Bay. J. Korean Soc. Civil Eng., 16(2-1): 63-72.
  10. Jung, T.S., 1996b. Wind effects on water circulation of Masan-Jinhae Bay. J. Korean Soc. Civil Eng., 16(2-6): 577-588.
  11. Kajiyama, A., 1928. Flood forecasting for Han, Nakdong, and Daedong Rivers in Korea. Japan Soc. Civil Eng., 14(1): 77-142.
  12. Kang, S.W., 1991. Circulation and pollutant dispersion in Masan-Jinhae Bay of Korea. Marine Pollution Bulletin, 23: 37-40.
  13. Kim, C.K., 1994. Three-dimensional numerical model experiments of tidal and wind-driven currents in Chinhae Bay. J. Korean Soc. of Oceanogr., 29(2): 95-106.
  14. Kim, N.S., H. Kang, M.S. Kwon, H.S. Jang and J.G. Kim, 2016. Comparison of seawater exchange rate of small scale inner bays within Jinhae Bay. J. Korean Soc. Mar. Environ. Energy, 19(1): 74-85.
  15. Lee, B., J.K. Kim, M. Kim, B.J. Choi, K.Y. Kim and M.G. Park, 2023. Northward movement of the tropical dinoflagellate Ornithocercus and Triposolenia genera in Korean coastal waters is strongly associated with the inflow of the Jeju Warm Current. Frontiers in Marine Science, 10: 1156121.
  16. Lee, M.O., J.K. Kim, B.K. Kim and M.W. Kim, 2020. Past, present, and future directions in the study of Jinhae Bay, Korea. J. Korean Soc. Mar. Environ. Energy, 23(2): 57-69.
  17. Lee, S.H. and R.C. Beardsley, 1999. Influence of stratification on residual tidal currents in the Yellow Sea. J. Geophys. Res., 104(C7): 15679-15701. DOI: https://doi.org/10.1029/1999JC900108.
  18. Lerczak, J.A. and W.R. Geyer, 2004. Modeling the lateral circulation in straight, stratified estuaries. J. Phys. Oceanogr., 34(6): 1410-1428.
  19. Li, Y. and M. Li, 2012. Wind-driven lateral circulation in a stratified estuary and its effects on the along-channel flow. J. Geophys. Res., 117(C9): C09005.
  20. Officer, C.B., 1976. Physical oceanography of estuaries (and associated coastal waters). Wiley, New York, 465 pp.
  21. Robinson, I.S., 1983. Tidally induced residual flows. In Elsevier Oceanography Series, 35: 321-356.
  22. Scully, M.E., W.R. Geyer and J.A. Lerczak, 2009. The influence of lateral advection on the residual estuarine circulation: A numerical modeling study of the Hudson River estuary. J. Phys. Oceanogr., 39(1): 107-124.
  23. Seo, J.H., D.J. Lee, G.J. Lee, J.G. Kim, K.S. Kim and K.J. Lim, 2018. Assessment and improvement of monthly coefficients of kajiyama formular on climate change. J. Korean Soc. Agric. Eng., 60(5): 81-93.
  24. Shchepetkin, A.F. and J.C. McWilliams, 2005. The regional oceanic modeling system (ROMS): a split-explicit, free-surface,topography-following-coordinate oceanic model. Ocean Modelling, 9(4): 347-404.
  25. Song, Y. and D. Haidvogel, 1994. A semi-implicit ocean circulation model using a generalized topography-following coordinate system. J. Comput. Phys., 115(1): 228-244.
  26. Umlauf, L. and H. Burchard, 2003. A generic length-scale equation for geophysical turbulence models. J. Mar. Res., 61(2): 235-265.
  27. Warner, J.C., C.R. Sherwood, H.G. Arango and R.P. Signell, 2005. Performance of four turbulence closure models implemented using a generic length scale method. Ocean Modelling, 8(1-2): 81-113.
  28. Yoon, H.S., B.K. Kim, Y.B. Lee, I.C. Lee and C.R. Ryu, 2006. Real-time three-dimensional numerical modeling of tidal currents in Jinhae bay. The Korean Soc. Mar. Environ. Energy, Fall Conference Papers, pp. 72-78.