DOI QR코드

DOI QR Code

BAP1 controls mesenchymal stem cell migration by inhibiting the ERK signaling pathway

  • Seobin Kim (Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Eun-Woo Lee (Metabolic Disease Research Center, KRIBB) ;
  • Doo-Byoung Oh (Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jinho Seo (Aging Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • Received : 2023.09.14
  • Accepted : 2023.11.09
  • Published : 2024.05.31

Abstract

Due to their stem-like characteristics and immunosuppressive properties, Mesenchymal stem cells (MSCs) offer remarkable potential in regenerative medicine. Much effort has been devoted to enhancing the efficacy of MSC therapy by enhancing MSC migration. In this study, we identified deubiquitinase BRCA1-associated protein 1 (BAP1) as an inhibitor of MSC migration. Using deubiquitinase siRNA library screening based on an in vitro wound healing assay, we found that silencing BAP1 significantly augmented MSC migration. Conversely, BAP1 overexpression reduced the migration and invasion capabilities of MSCs. BAP1 depletion in MSCs upregulates ERK phosphorylation, thereby increasing the expression of the migration factor, osteopontin. Further examination revealed that BAP1 interacts with phosphorylated ERK1/2, deubiquitinating their ubiquitins, and thus attenuating the ERK signaling pathway. Overall, our study highlights the critical role of BAP1 in regulating MSC migration through its deubiquitinase activity, and suggests a novel approach to improve the therapeutic potential of MSCs in regenerative medicine.

Keywords

Acknowledgement

This work was supported by grants from the National Research Foundation of Korea [NRF-2020R1C1C1006833, NRF-2022 R1A2C1011353, and CRC22011-300] and the Korea Research Institute of Bioscience and Biotechnology (KRIBB) Research Initiative Program [KGM5322321].

References

  1. Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N and Suganuma N (2019) Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci 76, 3323-3348 https://doi.org/10.1007/s00018-019-03125-1
  2. Nauta AJ and Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110, 3499-3506 https://doi.org/10.1182/blood-2007-02-069716
  3. Francois M, Romieu-Mourez R, Li M and Galipeau J (2012) Human MSC suppression correlates with cytokine induction of indoleamine 2,3-dioxygenase and bystander M2 macrophage differentiation. Mol Ther 20, 187-195 https://doi.org/10.1038/mt.2011.189
  4. Bernardo ME and Fibbe WE (2013) Mesenchymal stromal cells: sensors and switchers of inflammation. Cell Stem Cell 13, 392-402
  5. Prockop DJ (2013) Concise review: two negative feedback loops place mesenchymal stem/stromal cells at the center of early regulators of inflammation. Stem Cells 31, 2042-2046 https://doi.org/10.1002/stem.1400
  6. Ankrum J and Karp JM (2010) Mesenchymal stem cell therapy: two steps forward, one step back. Trends Mol Med 16, 203-209
  7. Nitzsche F, Muller C, Lukomska B, Jolkkonen J, Deten A and Boltze J (2017) Concise review: MSC adhesion cascade-insights into homing and transendothelial migration. Stem Cells 35, 1446-1460
  8. Mun JY, Shin KK, Kwon O, Lim YT and Oh DB (2016) Minicircle microporation-based non-viral gene delivery improved the targeting of mesenchymal stem cells to an injury site. Biomaterials 101, 310-320 https://doi.org/10.1016/j.biomaterials.2016.05.057
  9. Fu X, Liu G, Halim A, Ju Y, Luo Q and Song AG (2019) Mesenchymal stem cell migration and tissue repair. Cells 8, 784
  10. Swatek KN and Komander D (2016) Ubiquitin modifications. Cell Res 26, 399-422 https://doi.org/10.1038/cr.2016.39
  11. Mevissen TET and Komander D (2017) Mechanisms of deubiquitinase specificity and regulation. Annu Rev Biochem 86, 159-192 https://doi.org/10.1146/annurev-biochem-061516-044916
  12. Masclef L, Ahmed O, Estavoyer B et al (2021) Roles and mechanisms of BAP1 deubiquitinase in tumor suppression. Cell Death Differ 28, 606-625 https://doi.org/10.1038/s41418-020-00709-4
  13. Machida YJ, Machida Y, Vashisht AA, Wohlschlegel JA and Dutta A (2009) The deubiquitinating enzyme BAP1 regulates cell growth via interaction with HCF-1. J Biol Chem 284, 34179-34188
  14. Ruan HB, Han X, Li MD et al (2012) O-GlcNAc transferase/host cell factor C1 complex regulates gluconeogenesis by modulating PGC-1alpha stability. Cell Metab 16, 226-237 https://doi.org/10.1016/j.cmet.2012.07.006
  15. Qin J, Zhou Z, Chen W et al (2015) BAP1 promotes breast cancer cell proliferation and metastasis by deubiquitinating KLF5. Nat Commun 6, 8471
  16. Bononi A, Giorgi C, Patergnani S et al (2017) BAP1 regulates IP3R3-mediated Ca(2+) flux to mitochondria suppressing cell transformation. Nature 546, 549-553 https://doi.org/10.1038/nature22798
  17. Yu L, Jearawiriyapaisarn N, Lee MP et al (2018) BAP1 regulation of the key adaptor protein NCoR1 is critical for gamma-globin gene repression. Genes Dev 32, 1537-1549 https://doi.org/10.1101/gad.318436.118
  18. Lee HS, Seo HR, Lee SA, Choi S, Kang D and Kwon J (2019) BAP1 promotes stalled fork restart and cell survival via INO80 in response to replication stress. Biochem J 476, 3053-3066 https://doi.org/10.1042/BCJ20190622
  19. Cha EB, Shin KK, Seo J and Oh DB (2020) Antibody-secreting macrophages generated using CpG-free plasmid eliminate tumor cells through antibody-dependent cellular phagocytosis. BMB Rep 53, 442-447 https://doi.org/10.5483/BMBRep.2020.53.8.024
  20. Payne DM, Rossomando AJ, Martino P et al (1991) Identification of the regulatory phosphorylation sites in pp42/mitogen-activated protein kinase (MAP kinase). EMBO J 10, 885-892 https://doi.org/10.1002/j.1460-2075.1991.tb08021.x
  21. Haystead TA, Dent P, Wu J, Haystead CM and Sturgill TW (1992) Ordered phosphorylation of p42mapk by MAP kinase kinase. FEBS Lett 306, 17-22 https://doi.org/10.1016/0014-5793(92)80828-5
  22. Park CM, Lee JE and Kim JH (2020) BAP1 functions as a tumor promoter in prostate cancer cells through EMT regulation. Genet Mol Biol 43, e20190328
  23. Hu D, Zheng Y, Ou X, Zhang L, Du X and Shi S (2022) Integrated analysis of anti-tumor roles of BAP1 in osteosarcoma. Front Oncol 12, 973914
  24. Shen C, Wang Y, Wei P and Du X (2016) BRCA1-associated protein 1 deficiency in lung adenocarcinoma predicts poor outcome and increased tumor invasion. BMC Cancer 16, 670
  25. Kwon J, Lee D and Lee SA (2023) BAP1 as a guardian of genome stability: implications in human cancer. Exp Mol Med 55, 745-754
  26. Perkail S, Andricovich J, Kai Y and Tzatsos A (2020) BAP1 is a haploinsufficient tumor suppressor linking chronic pancreatitis to pancreatic cancer in mice. Nat Commun 11, 3018
  27. Perez-Garcia V, Lea G, Lopez-Jimenez P et al (2021) BAP1/ASXL complex modulation regulates epithelial-mesenchymal transition during trophoblast differentiation and invasion. Elife 10, e63254
  28. Zhu G, Herlyn M and Yang X (2021) TRIM15 and CYLD regulate ERK activation via lysine-63-linked polyubiquitination. Nat Cell Biol 23, 978-991 https://doi.org/10.1038/s41556-021-00732-8
  29. Barbour H, Nkwe NS, Estavoyer B et al (2023) An inventory of crosstalk between ubiquitination and other post-translational modifications in orchestrating cellular processes. iScience 26, 106276
  30. Zhou Y, He C, Yan D et al (2016) The kinase CK1varepsilon controls the antiviral immune response by phosphorylating the signaling adaptor TRAF3. Nat Immunol 17, 397-405 https://doi.org/10.1038/ni.3395
  31. Seo J, Lee EW, Shin J et al (2018) K6 linked polyubiquitylation of FADD by CHIP prevents death inducing signaling complex formation suppressing cell death. Oncogene 37, 4994-5006 https://doi.org/10.1038/s41388-018-0323-z
  32. Seo J, Lee EW, Sung H et al (2016) CHIP controls necroptosis through ubiquitylation- and lysosome-dependent degradation of RIPK3. Nat Cell Biol 18, 291-302 https://doi.org/10.1038/ncb3314