DOI QR코드

DOI QR Code

3D epigenomics and 3D epigenopathies

  • Kyung-Hwan Lee (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jungyu Kim (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Ji Hun Kim (Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2023.12.04
  • Accepted : 2024.03.18
  • Published : 2024.05.31

Abstract

Mammalian genomes are intricately compacted to form sophisticated 3-dimensional structures within the tiny nucleus, so called 3D genome folding. Despite their shapes reminiscent of an entangled yarn, the rapid development of molecular and next-generation sequencing technologies (NGS) has revealed that mammalian genomes are highly organized in a hierarchical order that delicately affects transcription activities. An increasing amount of evidence suggests that 3D genome folding is implicated in diseases, giving us a clue on how to identify novel therapeutic approaches. In this review, we will study what 3D genome folding means in epigenetics, what types of 3D genome structures there are, how they are formed, and how the technologies have developed to explore them. We will also discuss the pathological implications of 3D genome folding. Finally, we will discuss how to leverage 3D genome folding and engineering for future studies.

Keywords

Acknowledgement

This study was supported by the KAIST UP Program, and a Medical Scientist Training Program, and the National Research Foundation of Korea (NRF) grant from the Ministry of Science & ICT of Korea (RS-2024-00334460).

References

  1. Matthews KS (1992) DNA looping. Microbiol Rev 56, 123-136
  2. Dixon JR, Selvaraj S, Yue F et al (2012) Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485, 376-380
  3. Lieberman-Aiden E, van Berkum NL, Williams L et al (2009) Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289-293
  4. Dekker J, Rippe K, Dekker M and Kleckner N (2002) Capturing chromosome conformation. Science 295, 1306-1311
  5. Simonis M, Klous P, Splinter E et al (2006) Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38, 1348-1354
  6. Dostie J, Richmond TA, Arnaout RA et al (2006) Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res 16, 1299-1309
  7. Kim JH, Titus KR, Gong WF, Beagan JA, Cao ZD and Phillips-Cremins JE (2018) 5C-ID: increased resolution Chromosome-Conformation-Capture-Carbon Copy with 3C and double alternating primer design. Methods 142, 39-46
  8. Rao SSP, Huntley MH, Durand NC et al (2014) A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665-1680
  9. Hsieh THS, Weiner A, Lajoie B, Dekker J, Friedman N and Rando OJ (2015) Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108-119
  10. Bintu B, Mateo LJ, Su JH et al (2018) Super-resolution chromatin tracing reveals domains and cooperative interactions in single cells. Science 362, eaau1783
  11. Mateo LJ, Murphy SE, Hafner A, Cinquini IS, Walker CA and Boettiger AN (2019) Visualizing DNA folding and RNA in embryos at single-cell resolution. Nature 568, 49-54
  12. Waddington CH (1957) The strategy of the genes; a discussion of some aspects of theoretical biology, Allen & Unwin, London
  13. Creyghton MP, Cheng AW, Welstead GG et al (2010) Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci U S A 107, 21931-21936
  14. Liang GN, Lin JCY, Wei VV et al (2004) Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome. Proc Natl Acad Sci U S A 101, 7357-7362
  15. Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH and Issa JP (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32, e38
  16. Schones DE, Cui KR, Cuddapah S et al (2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 132, 887-898
  17. Crawford GE, Holt IE, Whittle J et al (2006) Genome-wide mapping of DNase hypersensitive sites using massively parallel signature sequencing (MPSS). Genome Res 16, 123-131
  18. Buenrostro JD, Giresi PG, Zaba LC, Chang HY and Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10, 1213-1218
  19. Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57-74
  20. Kundaje A, Meuleman W, Ernst J et al (2015) Integrative analysis of 111 reference human epigenomes. Nature 518, 317-330
  21. Stunnenberg HG, Hirst M and Consortium IHE (2016) The international human epigenome consortium: a blueprint for scientific collaboration and discovery. Cell 167, 1145-1149
  22. Consortium F (2006) The transcriptional landscape of the mammalian genome (vol 310, pg 1559, 2005). Science 311, 1713-1713
  23. Altshuler D, Durbin RM, Abecasis GR et al (2010) A map of human genome variation from population-scale sequencing. Nature 467, 1061-1073
  24. Altshuler DM, Durbin RM, Abecasis GR et al (2012) An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56-65
  25. Chin L, Meyerson M, Aldape K et al (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455, 1061-1068
  26. Stein GS, Spelsberg TC and Kleinsmith LJ (1974) Non-histone chromosomal proteins and gene regulation. Science 183, 817-824
  27. Cremer T, Cremer C, Schneider T, Baumann H, Hens L and Kirschvolders M (1982) Analysis of chromosome positions in the interphase nucleus of chinese-hamster cells by laser-UV-microirradiation experiments. Hum Genet 62, 201-209
  28. Cremer M, Grasser F, Lanctot C et al (2008) Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol Biol 463, 205-239
  29. Loven J, Hoke HA, Lin CY et al (2013) Selective Inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153, 320-334
  30. Whyte WA, Orlando DA, Hnisz D et al (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153, 307-319
  31. Lupianez DG, Kraft K, Heinrich V et al (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161, 1012-1025
  32. Won HJ, de la Torre-Ubieta L, Stein JL et al (2016) Chromosome conformation elucidates regulatory relationships in developing human brain. Nature 538, 523-527
  33. Zuvich RL, Bush WS, McCauley JL et al (2011) Interrogating the complex role of chromosome 16p13.13 in multiple sclerosis susceptibility: independent genetic signals in the CIITA-CLEC16A-SOCS1 gene complex. Hum Mol Genet 20, 3517-3524
  34. Stephens PJ, Greenman CD, Fu BY et al (2011) Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell 144, 27-40
  35. Barutcu AR, Hong D, Lajoie BR et al (2016) RUNX1 contributes to higher-order chromatin organization and gene regulation in breast cancer cells. Biochim Biophys Acta 1859, 1389-1397
  36. Dekker J, Belmont AS, Guttman M et al (2017) The 4D nucleome project. Nature 549, 219-226
  37. Thoma F, Koller T and Klug A (1979) Involvement of histone-H1 in the organization of the nucleosome and of the salt-dependent superstructures of chromatin. J Cell Biol 83, 403-427
  38. Olins AL and Olins DE (1974) Spheroid chromatin units (v bodies). Science 183, 330-332
  39. Luger K, Mader AW, Richmond RK, Sargent DF and Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251-260
  40. Felsenfeld G and Groudine M (2003) Controlling the double helix. Nature 421, 448-453
  41. Kornberg RD and Thomas JO (1974) Chromatin structure; oligomers of the histones. Science 184, 865-868
  42. Earnshaw WC and Rothfield N (1985) Identification of a family of human centromere proteins using autoimmune sera from patients with scleroderma. Chromosoma 91, 313-321
  43. Hatch CL and Bonner WM (1990) The human histone H2a.Z gene - sequence and regulation. J Biol Chem 265, 15211-15218
  44. Woodcock CL, Skoultchi AI and Fan Y (2006) Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res 14, 17-25
  45. Roth SY, Denu JM and Allis CD (2001) Histone acetyltransferases. Annu Rev Biochem 70, 81-120
  46. Marks PA, Miller T and Richon VM (2003) Histone deacetylases. Curr Opin Pharmacol 3, 344-351
  47. Tschiersch B, Hofmann A, Krauss V, Dorn R, Korge G and Reuter G (1994) The protein encoded by the Drosophila position-effect variegation suppressor gene Su(var)3-9 combines domains of antagonistic regulators of homeotic gene complexes. EMBO J 13, 3822-3831
  48. Sims RJ, Nishioka K and Reinberg D (2003) Histone lysine methylation: a signature for chromatin function. Trends Genet 19, 629-639
  49. Cedar H and Bergman Y (2009) Linking DNA methylation and histone modification: patterns and paradigms. Nat Rev Genet 10, 295-304
  50. Edwards JR, O'Donnell AH, Rollins RA et al (2010) Chromatin and sequence features that define the fine and gross structure of genomic methylation patterns. Genome Res 20, 972-980
  51. Bestor TH, Edwards JR and Boulard M (2015) Notes on the role of dynamic DNA methylation in mammalian development. Proc Natl Acad Sci U S A 112, 6796-6799
  52. Saxonov S, Berg P and Brutlag DL (2006) A genome-wide analysis of CpG dinucleotides in the human genome distinguishes two distinct classes of promoters. Proc Natl Acad Sci U S A 103, 1412-1417
  53. de Wit E, Vos ESM, Holwerda SJB et al (2015) CTCF binding polarity determines chromatin looping. Mol Cell 60, 676-684
  54. Guacci V, Koshland D and Strunnikov A (1997) A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91, 47-57
  55. Michaelis C, Ciosk R and Nasmyth K (1997) Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91, 35-45
  56. Losada A, Hirano M and Hirano T (1998) Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Genes Dev 12, 1986-1997
  57. Gruber S, Haering CH and Nasmyth K (2003) Chromosomal cohesin forms a ring. Cell 112, 765-777
  58. Ciosk R, Shirayama M, Shevchenko A et al (2000) Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol Cell 5, 243-254
  59. Kim Y, Shi ZB, Zhang HS, Finkelstein IJ and Yu HT (2019) Human cohesin compacts DNA by loop extrusion. Science 366, 1345-1349
  60. Hansen AS (2020) CTCF as a boundary factor for cohesin-mediated loop extrusion: evidence for a multi-step mechanism. Nucleus 11, 132-148
  61. Rao SSP, Huang SC, St Hilaire BG et al (2017) Cohesin loss eliminates all loop domains. Cell 171, 305-320 e324
  62. Weintraub AS, Li CH, Zamudio AV et al (2017) YY1 is a structural regulator of enhancer-promoter loops. Cell 171, 1573-1588 e1528
  63. Gabriele M, Vulto-van Silfhout AT, Germain PL et al (2017) YY1 haploinsufficiency causes an intellectual disability syndrome featuring transcriptional and chromatin dysfunction. Am J Hum Genet 100, 907-925
  64. Lee GR (2014) Role of YY1 in long-range chromosomal interactions regulating Th2 cytokine expression. Transcription 5, e27976
  65. Beagan JA, Duong MT, Titus KR et al (2017) YY1 and CTCF orchestrate a 3D chromatin looping switch during early neural lineage commitment. Genome Res 27, 1139-1152
  66. Kimura K and Hirano T (1997) ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation. Cell 90, 625-634
  67. Ohta S, Bukowski-Wills JC, Sanchez-Pulido L et al (2010) The protein composition of mitotic chromosomes determined using multiclassifier combinatorial proteomics. Cell 142, 810-821
  68. Zhang T, Paulson JR, Bakhrebah M et al (2016) Condensin I and II behaviour in interphase nuclei and cells undergoing premature chromosome condensation. Chromosome Res 24, 243-269
  69. Cuylen S, Metz J and Haering CH (2011) Condensin structures chromosomal DNA through topological links. Nat Struct Mol Biol 18, 894-U852
  70. Kim E, Gonzalez AM, Pradhan B, van der Torre J and Dekker C (2022) Condensin-driven loop extrusion on supercoiled DNA. Nat Struct Mol Biol 29, 719-727
  71. Hudson DF, Ohta S, Freisinger T et al (2008) Molecular and genetic analysis of condensin function in vertebrate cells. Mol Biol Cell 19, 3070-3079
  72. Barysz H, Kim JH, Chen ZA et al (2015) Three-dimensional topology of the SMC2/SMC4 subcomplex from chicken condensin I revealed by cross-linking and molecular modelling. Open Biol 5, 150005
  73. Krepel D, Cheng RR, Di Pierro M and Onuchic JN (2018) Deciphering the structure of the condensin protein complex. Proc Natl Acad Sci U S A 115, 11911-11916
  74. Terakawa T, Bisht S, Eeftens JM, Dekker C, Haering CH and Greene EC (2017) The condensin complex is a mechanochemical motor that translocates along DNA. Science 358, 672-676
  75. Van Bortle K, Nichols MH, Li L et al (2014) Insulator function and topological domain border strength scale with architectural protein occupancy. Genome Biol 15, R82
  76. Beagan JA and Phillips-Cremins JE (2020) On the existence and functionality of topologically associating domains. Nat Genet 52, 8-16
  77. Phillips-Cremins JE, Sauria MEG, Sanyal A et al (2013) Architectural protein subclasses shape 3D organization of genomes during lineage commitment. Cell 153, 1281-1295
  78. Hsieh THS, Cattoglio C, Slobodyanyuk E et al (2020) Resolving the 3D landscape of transcription-linked mammalian chromatin folding. Mol Cell 78, 539-553 e538
  79. Ibrahim DM and Mundlos S (2020) The role of 3D chromatin domains in gene regulation: a multi-facetted view on genome organization. Curr Opin Genet Dev 61, 1-8
  80. Rudan MV, Barrington C, Henderson S et al (2015) Comparative Hi-C reveals that ctcf underlies evolution of chromosomal domain architecture. Cell Rep 10, 1297-1309
  81. Symmons O, Pan L, Remeseiro S et al (2016) The Shh topological domain facilitates the action of remote enhancers by reducing the effects of genomic distances. Dev Cell 39, 529-543
  82. Symmons O, Uslu VV, Tsujimura T et al (2014) Functional and topological characteristics of mammalian regulatory domains. Genome Res 24, 390-400
  83. Hnisz D, Weintraub AS, Day DS et al (2016) Activation of proto-oncogenes by disruption of chromosome neighborhoods. Science 351, 1454-1458
  84. Chakraborty S, Kopitchinski N, Zuo ZY et al (2023) Enhancer-promoter interactions can bypass CTCF-mediated boundaries and contribute to phenotypic robustness. Nat Genet 55, 280-290
  85. Gibcus JH and Dekker J (2013) The hierarchy of the 3D genome. Mol Cell 49, 773-782
  86. Wang SY, Su JH, Beliveau BJ et al (2016) Spatial organization of chromatin domains and compartments in single chromosomes. Science 353, 598-602
  87. Malachowski T, Chandradoss KR, Boya R et al (2023) Spatially coordinated heterochromatinization of long synaptic genes in fragile X syndrome. Cell 186, 5840-5858 e5836
  88. Hnisz D, Shrinivas K, Young RA, Chakraborty AK and Sharp PA (2017) A phase separation model for transcriptional control. Cell 169, 13-23
  89. Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X and Karpen GH (2017) Phase separation drives heterochromatin domain formation. Nature 547, 241-245
  90. Shin Y and Brangwynne CP (2017) Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382
  91. Shin Y (2022) Rich phase separation behavior of biomolecules. Mol Cells 45, 6-15
  92. Boija A, Klein IA, Sabari BR et al (2018) Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175, 1842-1855 e1816
  93. Sabari BR, Dall'Agnese A, Boija A et al (2018) Coactivator condensation at super-enhancers links phase separation and gene control. Science 361, eaar3958
  94. Kim YJ, Lee M, Lee YT et al (2023) Light-activated macromolecular phase separation modulates transcription by reconfiguring chromatin interactions. Science Advances 9, eadg1123
  95. Belaghzal H, Borrman T, Stephens AD et al (2021) Liquid chromatin Hi-C characterizes compartment-dependent chromatin interaction dynamics. Nat Genet 53, 367-378
  96. Paulson JR and Laemmli UK (1977) The structure of histone-depleted metaphase chromosomes. Cell 12, 817-828
  97. Earnshaw WC and Laemmli UK (1983) Architecture of metaphase chromosomes and chromosome scaffolds. J Cell Biol 96, 84-93
  98. Cremer T and Cremer C (2001) Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet 2, 292-301
  99. Fraser P and Bickmore W (2007) Nuclear organization of the genome and the potential for gene regulation. Nature 447, 413-417
  100. Meaburn KJ and Misteli T (2007) Chromosome territories. Nature 445, 379-381
  101. Phillips JE and Corces VG (2009) CTCF: master weaver of the genome. Cell 137, 1194-1211
  102. Gheldof N, Smith EM, Tabuchi TM et al (2010) Cell-type-specific long-range looping interactions identify distant regulatory elements of the CFTR gene. Nucleic Acids Res 38, 4325-4336
  103. Simonis M, Kooren J and de Laat W (2007) An evaluation of 3C-based methods to capture DNA interactions. Nat Methods 4, 895-901
  104. Tolhuis B, Palstra RJ, Splinter E, Grosveld F and de Laat W (2002) Looping and interaction between hypersensitive sites in the active β-globin locus. Mol Cell 10, 1453-1465
  105. van de Werken HJG, Landan G, Holwerda SJB et al (2012) Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat Methods 9, 969-972
  106. Zuin J, Dixon JR, van der Reijden MIJA et al (2014) Cohesin and CTCF differentially affect chromatin architecture and gene expression in human cells. Proc Natl Acad Sci U S A 111, 996-1001
  107. Beagan JA, Gilgenast TG, Kim J et al (2016) Local genome topology can exhibit an incompletely rewired 3D-folding state during somatic cell reprogramming. Cell Stem Cell 18, 611-624
  108. Kim JH, Rege M, Valeri J et al (2019) LADL: light-activated dynamic looping for endogenous gene expression control. Nat Methods 16, 633-639
  109. Krijger PHL, Geeven G, Bianchi V, Hilvering CRE and de Laat W (2020) 4C-seq from beginning to end: a detailed protocol for sample preparation and data analysis. Methods 170, 17-32
  110. Ramani V, Cusanovich DA, Hause RJ et al (2016) Mapping 3D genome architecture through in situ DNase Hi-C. Nat Protoc 11, 59-76
  111. Hamley JC, Li HP, Denny N, Downes D and Davies JOJ (2023) Determining chromatin architecture with Micro Capture-C. Nat Protoc 18, 1687-1711
  112. Goel VY, Huseyin MK and Hansen AS (2023) Region Capture Micro-C reveals coalescence of enhancers and promoters into nested microcompartments. Nat Genet 55, 1048-1056
  113. Mifsud B, Tavares-Cadete F, Young AN et al (2015) Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat Genet 47, 598-606
  114. Dryden NH, Broome LR, Dudbridge F et al (2014) Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C. Genome Res 24, 1854-1868
  115. Gymrek M, Willems T, Guilmatre A et al (2016) Abundant contribution of short tandem repeats to gene expression variation in humans. Nat Genet 48, 22-29
  116. La Spada AR and Taylor JP (2010) Repeat expansion disease: progress and puzzles in disease pathogenesis. Nat Rev Genet 11, 247-258
  117. McMurray CT (2010) Mechanisms of trinucleotide repeat instability during human development. Nat Rev Genet 11, 786-799
  118. Pearson CE, Edamura KN and Cleary JD (2005) Repeat instability: mechanisms of dynamic mutations. Nat Rev Genet 6, 729-742
  119. Lubs HA (1969) A marker X chromosome. Am J Hum Genet 21, 231-244
  120. Usdin K, House NCM and Freudenreich CH (2015) Repeat instability during DNA repair: insights from model systems. Crit Rev Biochem Mol Biol 50, 142-167
  121. Sun JH, Zhou L, Emerson DJ et al (2018) Disease-associated short tandem repeats co-localize with chromatin domain boundaries. Cell 175, 224-238 e215
  122. Alcala-Vida R, Seguin J, Lotz C et al (2021) Age-related and disease locus-specific mechanisms contribute to early remodelling of chromatin structure in Huntington's disease mice. Nat Commun 12, 364
  123. Scriba CK, Beecroft SJ, Clayton JS et al (2020) A novel RFC1 repeat motif (ACAGG) in two Asia-Pacific CANVAS families. Brain 143, 2904-2910
  124. Dominik N, Magri S, Curro R et al (2023) Normal and pathogenic variation of RFC1 repeat expansions: implications for clinical diagnosis. Brain 146, 5060-5069
  125. Burns KH (2017) Transposable elements in cancer. Nat Rev Cancer 17, 415-424
  126. Anwar SL, Wulaningsih W and Lehmann U (2017) Transposable elements in human cancer: causes and consequences of deregulation. Int J Mol Sci 18, 974
  127. Lamprecht B, Walter K, Kreher S et al (2010) Derepression of an endogenous long terminal repeat activates the CSF1R proto-oncogene in human lymphoma. Nat Med 16, 571-579
  128. Xie M, Hong C, Zhang B et al (2013) DNA hypomethylation within specific transposable element families associates with tissue-specific enhancer landscape. Nat Genet 45, 836-841
  129. Wolff EM, Byun HM, Han HF et al (2010) Hypomethylation of a LINE-1 promoter activates an alternate transcript of the MET oncogene in bladders with cancer. PLoS Genet 6, e1000917
  130. Hur K, Cejas P, Feliu J et al (2014) Hypomethylation of long interspersed nuclear element-1 (LINE-1) leads to activation of proto-oncogenes in human colorectal cancer metastasis. Gut 63, 635-646
  131. Cajuso T, Sulo P, Tanskanen T et al (2019) Retrotransposon insertions can initiate colorectal cancer and are associated with poor survival. Nat Commun 10, 4022
  132. Nam CH, Youk J, Kim JY et al (2023) Widespread somatic L1 retrotransposition in normal colorectal epithelium. Nature 617, 540-547
  133. Schmidt D, Schwalie PC, Wilson MD et al (2012) Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages (vol 148, pg 335, 2012). Cell 148, 832-832
  134. Diehl AG, Ouyang NX and Boyle AP (2020) Transposable elements contribute to cell and species-specific chromatin looping and gene regulation in mammalian genomes. Nat Commun 11, 1796
  135. Kolch W, Halasz M, Granovskaya M and Kholodenko BN (2015) The dynamic control of signal transduction networks in cancer cells. Nat Rev Cancer 15, 515-527
  136. Jaenisch R and Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33, 245-254
  137. Hnisz D, Abraham BJ, Lee TI et al (2013) Super-enhancers in the control of cell identity and disease. Cell 155, 934-947
  138. Mansour MR, Abraham BJ, Anders L et al (2014) An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 346, 1373-1377
  139. Schuijers J, Manteiga JC, Weintraub AS et al (2018) Transcriptional dysregulation of myc reveals common enhancer-docking mechanism. Cell Rep 23, 349-360
  140. Zimmerman MW, Liu Y, He S et al (2018) MYC drives a subset of high-risk pediatric neuroblastomas and is activated through mechanisms including enhancer hijacking and focal enhancer amplification. Cancer Discov 8, 320-335
  141. Xiang JF, Yin QF, Chen T et al (2014) Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res 24, 513-531
  142. Fang H, Liu HM, Wu WH, Liu H, Pan Y and Li WJ (2018) Upregulation of long noncoding RNA CCAT1-L promotes epithelial-mesenchymal transition in gastric adenocarcinoma. Onco Targets Ther 11, 5647-5654
  143. Liu B, Liu X, Han L et al (2022) BRD4-directed super-enhancer organization of transcription repression programs links to chemotherapeutic efficacy in breast cancer. Proc Natl Acad Sci U S A 119, e2109133119
  144. Zhou S, Zhang S, Wang L et al (2020) BET protein inhibitor JQ1 downregulates chromatin accessibility and suppresses metastasis of gastric cancer via inactivating RUNX2/NID1 signaling. Oncogenesis 9, 33
  145. Jiang G, Deng W, Liu Y and Wang C (2020) General mechanism of JQ1 in inhibiting various types of cancer. Mol Med Rep 21, 1021-1034
  146. Pang YX, Bai GG, Zhao J et al (2022) The BRD4 inhibitor JQ1 suppresses tumor growth by reducing c-Myc expression in endometrial cancer. J Transl Med 20, 336
  147. Deardorff MA, Kaur M, Yaeger D et al (2007) Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of Cornelia de Lange syndrome with predominant mental retardation. Am J Hum Genet 80, 485-494
  148. Garcia P, Fernandez-Hernandez R, Cuadrado A et al (2021) Disruption of NIPBL/Scc2 in Cornelia de Lange Syndrome provokes cohesin genome-wide redistribution with an impact in the transcriptome. Nat Commun 12, 4551
  149. Krantz ID, McCallum J, DeScipio C et al (2004) Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat Genet 36, 631-635
  150. Tonkin ET, Wang TJ, Lisgo S, Bamshad MJ and Strachan T (2004) Encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet 36, 636-641
  151. Panarotto M, Davidson IF, Litos G, Schleiffer A and Peters JM (2022) Cornelia de Lange syndrome mutations in NIPBL can impair cohesin-mediated DNA loop extrusion. Proc Natl Acad Sci U S A 119, e2201029119
  152. Neitzel H, Neumann LM, Schindler D et al (2002) Premature chromosome condensation in humans associated with microcephaly and mental retardation: a novel autosomal recessive condition. Am J Hum Genet 70, 1015-1022
  153. Trimborn M, Bell SM, Felix C et al (2004) Mutations in microcephalin cause aberrant regulation of chromosome condensation. Am J Hum Genet 75, 261-266
  154. Wood JL, Liang YL, Li KY and Chen JJ (2008) Microcephalin/MCPH1 associates with the condensin II complex to function in homologous recombination repair. J Biol Chem 283, 29586-29592
  155. Houlard M, Cutts EE, Shamim MS et al (2021) MCPH1 inhibits Condensin II during interphase by regulating its SMC2-Kleisin interface. eLife 10, e73348
  156. Martin CA, Murray JE, Carroll P et al (2016) Mutations in genes encoding condensin complex proteins cause microcephaly through decatenation failure at mitosis. Genes Dev 30, 2158-2172
  157. Bediaga NG, Coughlan HD, Johanson TM et al (2021) Multi-level remodelling of chromatin underlying activation of human T cells. Sci Rep 11, 528
  158. Wang W, Chandra A, Goldman N et al (2022) TCF-1 promotes chromatin interactions across topologically associating domains in T cell progenitors. Nat Immunol 23, 1052-1062
  159. Schebesta A, McManus S, Salvagiotto G, Delogu A, Busslinger GA and Busslinger M (2007) Transcription factor Pax5 activates the chromatin of key genes involved in B cell signaling, adhesion, migration, and immune function. Immunity 27, 49-63
  160. Johanson TM, Lun ATL, Coughlan HD et al (2018) Transcription-factor-mediated supervision of global genome architecture maintains B cell identity. Nat Immunol 19, 1257-1264
  161. Krumm A and Duan Z (2019) Understanding the 3D genome: emerging impacts on human disease. Semin Cell Dev Biol 90, 62-77
  162. Scourzic L, Salataj E and Apostolou E (2021) Deciphering the complexity of 3D chromatin organization driving lymphopoiesis and lymphoid malignancies. Front Immunol 12, 669881
  163. Mumbach MR, Satpathy AT, Boyle EA et al (2017) Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nat Genet 49, 1602-1612
  164. Schmiedel BJ, Seumois G, Samaniego-Castruita D et al (2016) 17q21 asthma-risk variants switch CTCF binding and regulate IL-2 production by T cells. Nat Commun 7, 13426
  165. Martin P, McGovern A, Orozco G et al (2015) Capture Hi-C reveals novel candidate genes and complex long-range interactions with related autoimmune risk loci. Nat Commun 6, 10069
  166. Kubo N, Ishii H, Xiong X et al (2021) Promoter-proximal CTCF binding promotes distal enhancer-dependent gene activation. Nat Struct Mol Biol 28, 152-161
  167. Shin Y, Berry J, Pannucci N, Haataja MP, Toettcher JE and Brangwynne CP (2017) Spatiotemporal control of intracellular phase transitions using light-activated optodroplets. Cell 168, 159-171 e114