DOI QR코드

DOI QR Code

Quantitative Comparison of Cinnamomi Cortex and Various Cinnamon Barks using HPLC Analysis

육계 및 기원종별 계피의 지표성분 함량 비교

  • Han-Young Kim (School of Korean Medicine, Pusan National University) ;
  • Jung-Hoon Kim (Division of Pharmacology, School of Korean Medicine, Pusan National University)
  • 김한영 (부산대학교 한의학전문대학원) ;
  • 김정훈 (부산대학교 한의학전문대학원 약물의학교실)
  • Received : 2024.04.03
  • Accepted : 2024.05.25
  • Published : 2024.05.30

Abstract

Objective : In this study, we performed quantitative comparison on the content of 10 marker compounds in cinnamon barks from different species and found chemical discrimination between genuine Cinnamomum cassia and other Cinnamomum species (Non C. cassia). Methods : Cinnamon bark samples were extracted using the ultrasonication in 100% methanol for 30 minutes. The samples were analysed using high-performance liquid chromatography with statistical analysis. Results : The analytical method developed in this study met all validation criteria and was applied to the quantification of the 10 marker compounds in cinnamon bark samples. The major chemical discrimination of C. cassia were identified as low content of epicatechin and eugenol, and high contents of benzaldehyde, cinnamaldehyde and cinnamic acid compared to other Non C. cassia samples. Especially, among other compounds, the content of cinnamaldehyde was the highest in the C. cassia and Non C. cassia samples. The result of principal component analysis showed that the samples of C. cassia and Non C. cassia were clearly differentiated via benzaldehyde, cinnamaldehyde, cinnamic acid, eugenol, and epicatechin, which influenced on clustering C. cassia and Non C. cassia samples. Conclusion : C. cassia and Non C. cassia samples were chemically discriminated using the quantitative HPLC analysis. Based on this, it is possible to control the quality of herbal medicines containing Cinnamomi Cortex. It is necessary to further improve the accuracy of discrimination between C. cassia and Non C. cassia species to evaluate cinnamon bark quality.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었습니다. 시료를 제공한 한국한의학연구원 한약표준표본관에 감사드립니다.

References

  1. Herbology editorial committee of Korean medicine schools. Herbology. 4th ed. Seoul : Yeonglimsa. 2021 : 371.
  2. Song MY, Kang SY, Kang A, Hwang JH, Park YK, Jung HW. Cinnamomum cassia prevents high-fat diet-induced obesity in mice through the increase of muscle energy. Am. J. Chin. 2017 ; 45(5) : 1017-31. https://doi.org/10.1142/S0192415X17500549
  3. Ishida T, Iizuka M, Ou Y, Morisawa S, Hirata A, Yagi Y, Jobu K, Morita Y, Miyamura M. Juzentaihoto hot water extract alleviates muscle atrophy and improves motor function in streptozotocin-induced diabetic oxidative stress mice. J. Nat. Med. 2019 ; 73(1) : 202-9. https://doi.org/10.1248/bpb.19.1041
  4. Kubo M, Ma S, Wu J, Matsuda H. Antiinflammatory activities of 70% methanolic extract from Cinnamomi Cortex. Biol. Pharm. Bull. 1996 ; 19(8) : 1041-5.
  5. Jung HW, Kim OH, Wang TY, Kim SE, Park YK, Lee HJ. Inhibitory effect of Cinnamomi Cortex extract on motility of prostate cancer cells through reducing YAP activity. Kor. J. Herbol. 2019 ; 34(3): 55-61. https://doi.org/10.6116/kjh.2019.34.3.55.
  6. Chung JW, Kim JJ, Kim SJ. Antioxidative effects of Cinnamomi Cortex: A potential role of iNOS and COX-II. Pharmacogn. Mag. 2011 ; 7(28) : 314-9. https://doi.org/10.4103/0973-1296.90412
  7. Yang S, Choi G. A comparative study on standards of Korean herbal medicines in the pharmacopoeias of northeast-Asian countries (7) Cinnamon bark, Korean Herb. Med. Inf. 2016 ; 4(3) : 1-10. https://doi.org/10.22674/KHMI-4-3-1
  8. Jeremic K, Kladar N, Vucinic N, Todorovic N, Hitl M, Lalic-Popovic M, Gavaric N. Morphological characterization of cinnamon bark and powder available in the serbian market. Biol. Serbica. 2019 ; 41 : 89-93. https://doi.org/10.5281/zenodo.3525428
  9. Joshi K, Chavan P, Warude D, Patwardhan B. Molecular markers in herbal drug technology. Current Science. 2004 ; 87(2) : 159-65. https://www.jstor.org/stable/24108860 108860
  10. Regulation (EC) No. 1334/2008 of the European Parliament and the Council of 16 December 2008 on flavourings and certain food ingredients with flavouring properties for use in and on foods and amending Regulation (EC) No 1601/91 of the Council, Regulations (EC) No 2232/96 and (EC) No 110/2008 and Directive 2000/13/EC. OJEU. 2008, L354, 47. ELI: http://data.europa.eu/eli/reg/2008/1334/oj
  11. Anh NTH, Ngoc NB, Lan NTP, Loi NTM. Simultaneous HPLC determination of coumarin, cinnamyl alcohol, cinnamaldehyd, acid cinnamic, eugenol, cinnamyl acetat, acid 2-hydroxycinnamic in cinnamon using HPLC. Vietnam J. Food Control. 2020 ; 3(1) : 11-9. https://doi.org/10.47866/2615-9252/vjfc.100
  12. Woehrlin F, Fry H, Abraham K, Preiss-Weigert A. Quantification of flavoring constituents in cinnamon: High variation of coumarin in Cassia bark from the German retail market and in authentic samples from Indonesia. J. Agric. Food Chem. 2010 ; 58(19) : 10568-75. https://doi.org/10.1021/jf102112p
  13. Wang YH, Avula B, Nanayakkara ND, Zhao J, Khan IA. Cassia cinnamon as a source of coumarin in cinnamon-flavored food and food supplements in the United States. J. Agric. Food Chem. 2013 ; 61(18) : 4470-6. https://doi.org/10.1021/jf4005862
  14. Li Y, Kong D, Wu H. Analysis and evaluation of essential oil components of cinnamon barks using GC-MS and FTIR spectroscopy. Ind. Crops Prod. 2013 ; 41 : 269-78. https://doi.org/10.1016/j.indcrop.2012.04.056
  15. Wang Y, Harrington PB, Chen P. Metabolomic profiling and comparison of major cinnamon species using UHPLC-HRMS. Anal. Bioanal. Chem. 2020 ; 412(27) : 7669-81. https://doi.org/10.1007/s00216-020-02904-1
  16. Liang Y, Li Y, Sun A, Liu X. Chemical compound identification and antibacterial activity evaluation of cinnamon extracts obtained by subcritical n-butane and ethanol extraction. Food Sci. Nutr. 2019; 7(6) : 2186-93. https://doi.org/10.1002/fsn3.1065
  17. Bro R, Smilde AK. Principal component analysis. Anal. Methods 2014 ; 6(9) : 2812-31. https://doi.org/10.1039/C3AY41907J
  18. Dutta AB. A Chemical method for distinguishing cinnamon from cassia. J AOAC Int. 1961 ; 44 : 639-40. https://doi.org/10.1093/jaoac/44.4.639
  19. Stahl WH, Skarzynski JN, Voelker WA. Differentiation of certain types of cassias and cinnamons by measurement of mucilaginous character. J AOAC Int. 1969 ; 52(4) : 741-4. https://doi.org/10.1093/jaoac/52.4.741
  20. Kim IR, Eum TW, Ju YS. A study on morphological discrimination in kinds of Cinnamomi Cortex. Kor. J. Herbo. 2003 ; 18(4) : 229-34. UCI I410-ECN0102-2009-510-003331478
  21. Hendrick J. The amount of calcium oxalate in cinnamon and cassia barks. Analyst. 1907 ; 32(370) : 14-8. https://doi.org/10.1039/AN9073200014
  22. Dequeker, R. The quantitative determination of cinnamon in the form of powder. J. Pharm. Pharmacol. 1952 ; 4(1) ; 573-6. https://doi.org/10.1111/j.2042-7158.1952.tb13184.x
  23. Senanayake UM. The nature, description and biosynthesis of volatiles of Cinnamomum Spp. PhD Thesis. UNSW Sydney. 1977. https://doi.org/10.26190/unsworks/11588
  24. Li Y, Kong D, Huang R, Liang H, Xu C, Wu H. Variations in essential oil yields and compositions of Cinnamomum cassia leaves at different developmental stages. Ind. Crops Prod. 2013 ; 47 : 92-101. https://doi.org/10.1016/j.indcrop.2013.02.031
  25. Kim YS, Lee GS, Kim JH, Choi GY, Jeong SI, Cho SI, Ju YS, Kim HJ. A study of cutting methods by comparing the contents of cinnamic acid and cinnamaldehyde in different parts of Cinnamomi Ramulus. Kor. J. Herbol. 2011 ; 26(2) : 11-15. https://doi.org/10.6116/kjh.2011.26.2.011
  26. The Ministry of Korean Food and Drug Safety. The Korean Pharmacopoeia, 12th ed. In KFDA Notification No. 2019-102; MFDS: Osong, Korea, 2019
  27. Chen P, Sun J, Ford P. Differentiation of the four major species of cinnamons (C. burmannii, C. verum, C. cassia, and C. loureiroi) using a flow injection mass spectrometric (FIMS) fingerprinting method. J. Agric. Food Chem. 2014 ; 62(12) : 2516-21. https://doi.org/10.1021/jf405580c
  28. Sharma AK, Beniwal V. Biosynthesis and medicinal applications of proanthocyanidins: A recent update. Biocatal. Agric. Biotechnol. 2022 ; 102500. https://doi.org/10.1016/j.bcab.2022.102500
  29. Yazaki K, Okuda T. Condensed tannin production in callus and suspension cultures of Cinnamomum cassia. Phytochemistry 1990 ; 29(5) : 1559-62. https://doi.org/10.1016/0031-9422(90)80121-V
  30. Farag MA, Kabbash EM, Mediani A, Doll S, Esatbeyoglu T, Afifi SM. Comparative metabolite fingerprinting of four different cinnamon species analyzed via UPLC-MS and GC-MS and chemometric tools. Molecules 2022 ; 27(9) : 2935. https://doi.org/10.3390/molecules27092935
  31. Tanaka K, Li F, Tezuka Y, Watanabe S, Kawahara N, Kida H. Evaluation of the quality of Chinese and Vietnamese cassia using LC-MS and multivariate analysis. Nat. Prod. Commun. 2013 ; 8(1) : 75-8. https://doi.org/10.1177/1934578X1300800118
  32. Baskar V, Venkatesh R, Ramalingam S. Flavonoids (antioxidants systems) in higher plants and their response to stresses. In : Gupta DK, Palma J, Corpas FJ, eds. Antioxidants and antioxidant enzymes in higher plants. Switzerland : Springer. 2018 : 253-68. https://doi.org/10.1007/978-3-319-75088-0_12
  33. Rue EA, Rush MD, van Breemen RB. Procyanidins: a comprehensive review encompassing structure elucidation via mass spectrometry. Phytochem. Rev. 2018 ; 17(1) : 1-16. https://doi.org/10.1007/s11101-017-9507-3
  34. Yu K, Dixon RA, Duan, C. A role for ascorbate conjugates of (+)-catechin in proanthocyanidin polymerization. Nat. Commun. 2022 ; 13(1) : 3425. https://doi.org/10.1038/s41467-022-31153-2