DOI QR코드

DOI QR Code

Optimising IL-2 for Cancer Immunotherapy

  • Jonathan Sprent (Immunology Division, Garvan Institute of Medical Research) ;
  • Onur Boyman (Department of Immunology, University Hospital Zurich)
  • 투고 : 2023.11.15
  • 심사 : 2024.01.08
  • 발행 : 2024.02.29

초록

The key role of T cells in cancer immunotherapy is well established and is highlighted by the remarkable capacity of Ab-mediated checkpoint blockade to overcome T-cell exhaustion and amplify anti-tumor responses. However, total or partial tumor remission following checkpoint blockade is still limited to only a few types of tumors. Hence, concerted attempts are being made to devise new methods for improving tumor immunity. Currently, much attention is being focused on therapy with IL-2. This cytokine is a powerful growth factor for T cells and optimises their effector functions. When used at therapeutic doses for cancer treatment, however, IL-2 is highly toxic. Nevertheless, recent work has shown that modifying the structure or presentation of IL-2 can reduce toxicity and lead to effective anti-tumor responses in synergy with checkpoint blockade. Here, we review the complex interaction of IL-2 with T cells: first during normal homeostasis, then during responses to pathogens, and finally in anti-tumor responses.

키워드

과제정보

Jonathan Sprent has fond memories of working in Korea and acknowledges fruitful collaborations with many KAI members, in particular Charles Surh and Jaeho Cho; their valuable contributions are mentioned in the text. Onur Boyman is funded by Swiss National Science Foundation grants 310030-172978 and 310030-200669, Hochspezialisierte Medizin Schwerpunkt Immunologie (HSM-2-Immunologie), Clinical Research Priority Program CYTIMM-Z of University of Zurich.

참고문헌

  1. McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J 2006;26:154-158.
  2. Browning CH. Paul Ehrlich's Collected Papers. Nature 1961;189:254-255.
  3. Thomas L, Lawrence H. Cellular and Humoral Aspects of the Hypersensitive States. New York, NY: Hoeber-Harper; 1959. p.529-32.
  4. Burnet M. Cancer; a biological approach. I. The processes of control. BMJ 1957;1:779-786.
  5. Foley EJ. Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res 1953;13:835-837.
  6. Miller JF. Immunological function of the thymus. Lancet 1961;2:748-749.
  7. Cooper MD. The early history of B cells. Nat Rev Immunol 2015;15:191-197.
  8. Ribatti D. The concept of immune surveillance against tumors. The first theories. Oncotarget 2017;8:7175-7180.
  9. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002;3:991-998.
  10. Smyth MJ, Dunn GP, Schreiber RD. Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. Adv Immunol 2006;90:1-50.
  11. Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011;331:1565-1570.
  12. O'Sullivan T, Saddawi-Konefka R, Vermi W, Koebel CM, Arthur C, White JM, Uppaluri R, Andrews DM, Ngiow SF, Teng MW, et al. Cancer immunoediting by the innate immune system in the absence of adaptive immunity. J Exp Med 2012;209:1869-1882.
  13. Voskoboinik I, Smyth MJ, Trapani JA. Perforin-mediated target-cell death and immune homeostasis. Nat Rev Immunol 2006;6:940-952.
  14. Raulet DH. Missing self recognition and self tolerance of natural killer (NK) cells. Semin Immunol 2006;18:145-150.
  15. Kremenovic M, Schenk M, Lee DJ. Clinical and molecular insights into BCG immunotherapy for melanoma. J Intern Med 2020;288:625-640.
  16. Ascierto PA, Gogas HJ, Grob JJ, Algarra SM, Mohr P, Hansson J, Hauschild A. Adjuvant interferon alfa in malignant melanoma: an interdisciplinary and multinational expert review. Crit Rev Oncol Hematol 2013;85:149-161.
  17. Craig S, Earnshaw CH, Viros A. Ultraviolet light and melanoma. J Pathol 2018;244:578-585.
  18. Xie N, Shen G, Gao W, Huang Z, Huang C, Fu L. Neoantigens: promising targets for cancer therapy. Signal Transduct Target Ther 2023;8:9.
  19. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale AL, et al. Signatures of mutational processes in human cancer. Nature 2013;500:415-421.
  20. Raskov H, Orhan A, Christensen JP, Gogenur I. Cytotoxic CD8+ T cells in cancer and cancer immunotherapy. Br J Cancer 2021;124:359-367.
  21. Shourian M, Beltra JC, Bourdin B, Decaluwe H. Common gamma chain cytokines and CD8 T cells in cancer. Semin Immunol 2019;42:101307.
  22. Zhang X, Sun S, Hwang I, Tough DF, Sprent J. Potent and selective stimulation of memory-phenotype CD8+ T cells in vivo by IL-15. Immunity 1998;8:591-599.
  23. Kennedy MK, Glaccum M, Brown SN, Butz EA, Viney JL, Embers M, Matsuki N, Charrier K, Sedger L, Willis CR, et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J Exp Med 2000;191:771-780.
  24. Tan JT, Dudl E, LeRoy E, Murray R, Sprent J, Weinberg KI, Surh CD. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci U S A 2001;98:8732-8737.
  25. Judge AD, Zhang X, Fujii H, Surh CD, Sprent J. Interleukin 15 controls both proliferation and survival of a subset of memory-phenotype CD8+ T cells. J Exp Med 2002;196:935-946.
  26. Berard M, Brandt K, Bulfone-Paus S, Tough DF. IL-15 promotes the survival of naive and memory phenotype CD8+ T cells. J Immunol 2003;170:5018-5026.
  27. Sprent J, Surh CD. Normal T cell homeostasis: the conversion of naive cells into memory-phenotype cells. Nat Immunol 2011;12:478-484.
  28. Lee SW, Lee GW, Kim HO, Cho JH. Shaping heterogeneity of naive CD8+ T cell pools. Immune Netw 2023;23:e2.
  29. Boyman O, Cho JH, Tan JT, Surh CD, Sprent J. A major histocompatibility complex class I-dependent subset of memory phenotype CD8+ cells. J Exp Med 2006;203:1817-1825.
  30. Younes SA, Punkosdy G, Caucheteux S, Chen T, Grossman Z, Paul WE. Memory phenotype CD4 T cells undergoing rapid, nonburst-like, cytokine-driven proliferation can be distinguished from antigenexperienced memory cells. PLoS Biol 2011;9:e1001171.
  31. Kim KS, Hong SW, Han D, Yi J, Jung J, Yang BG, Lee JY, Lee M, Surh CD. Dietary antigens limit mucosal immunity by inducing regulatory T cells in the small intestine. Science 2016;351:858-863.
  32. Kawabe T, Ciucci T, Kim KS, Tayama S, Kawajiri A, Suzuki T, Tanaka R, Ishii N, Jankovic D, Zhu J, et al. Redefining the foreign antigen and self-driven memory CD4+ T-cell compartments via transcriptomic, phenotypic, and functional analyses. Front Immunol 2022;13:870542.
  33. Tough DF, Sprent J. Turnover of naive- and memory-phenotype T cells. J Exp Med 1994;179:1127-1135.
  34. Ernst B, Lee DS, Chang JM, Sprent J, Surh CD. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 1999;11:173-181.
  35. Goldrath AW, Bevan MJ. Low-affinity ligands for the TCR drive proliferation of mature CD8+ T cells in lymphopenic hosts. Immunity 1999;11:183-190.
  36. Kieper WC, Jameson SC. Homeostatic expansion and phenotypic conversion of naive T cells in response to self peptide/MHC ligands. Proc Natl Acad Sci U S A 1999;96:13306-13311.
  37. Kieper WC, Burghardt JT, Surh CD. A role for TCR affinity in regulating naive T cell homeostasis. J Immunol 2004;172:40-44.
  38. Min B. Spontaneous T cell proliferation: a physiologic process to create and maintain homeostatic balance and diversity of the immune system. Front Immunol 2018;9:547.
  39. Cho JH, Kim HO, Ju YJ, Kye YC, Lee GW, Lee SW, Yun CH, Bottini N, Webster K, Goodnow CC, et al. CD45-mediated control of TCR tuning in naive and memory CD8+ T cells. Nat Commun 2016;7:13373.
  40. Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 2012;12:180-190.
  41. Sakaguchi S, Mikami N, Wing JB, Tanaka A, Ichiyama K, Ohkura N. Regulatory T cells and human disease. Annu Rev Immunol 2020;38:541-566.
  42. Plitas G, Rudensky AY. Regulatory T cells in cancer. Annu Rev Cancer Biol 2020;4:459-477.
  43. Boyman O, Kovar M, Rubinstein MP, Surh CD, Sprent J. Selective stimulation of T cell subsets with antibody-cytokine immune complexes. Science 2006;311:1924-1927.
  44. Sadlack B, Lohler J, Schorle H, Klebb G, Haber H, Sickel E, Noelle RJ, Horak I. Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur J Immunol 1995;25:3053-3059.
  45. Kim JM, Rasmussen JP, Rudensky AY. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 2007;8:191-197.
  46. Chinen T, Volchkov PY, Chervonsky AV, Rudensky AY. A critical role for regulatory T cell-mediated control of inflammation in the absence of commensal microbiota. J Exp Med 2010;207:2323-2330.
  47. Yi J, Jung J, Hong SW, Lee JY, Han D, Kim KS, Sprent J, Surh CD. Unregulated antigen-presenting cell activation by T cells breaks self tolerance. Proc Natl Acad Sci U S A 2019;116:1007-1016.
  48. Owen DL, Mahmud SA, Vang KB, Kelly RM, Blazar BR, Smith KA, Farrar MA. Identification of cellular sources of IL-2 needed for regulatory T cell development and homeostasis. J Immunol 2018;200:3926-3933.
  49. Hemmers S, Schizas M, Azizi E, Dikiy S, Zhong Y, Feng Y, Altan-Bonnet G, Rudensky AY. IL-2 production by self-reactive CD4 thymocytes scales regulatory T cell generation in the thymus. J Exp Med 2019;216:2466-2478.
  50. Cho JH, Kim HO, Kim KS, Yang DH, Surh CD, Sprent J. Unique features of naive CD8+ T cell activation by IL-2. J Immunol 2013;191:5559-5573.
  51. Cho JH, Boyman O, Kim HO, Hahm B, Rubinstein MP, Ramsey C, Kim DM, Surh CD, Sprent J. An intense form of homeostatic proliferation of naive CD8+ cells driven by IL-2. J Exp Med 2007;204:1787-1801.
  52. Kieper WC, Troy A, Burghardt JT, Ramsey C, Lee JY, Jiang HQ, Dummer W, Shen H, Cebra JJ, Surh CD. Recent immune status determines the source of antigens that drive homeostatic T cell expansion. J Immunol 2005;174:3158-3163.
  53. Le Saout C, Villard M, Cabasse C, Jacquet C, Taylor N, Hernandez J. IL-2 mediates CD4+ T cell help in the breakdown of memory-like CD8+ T cell tolerance under lymphopenic conditions. PLoS One 2010;5:e12659.
  54. Kim J, Lee JY, Cho K, Hong SW, Kim KS, Sprent J, Im SH, Surh CD, Cho JH. Spontaneous proliferation of CD4+ T cells in RAG-deficient hosts promotes antigen-independent but IL-2-dependent strong proliferative response of naive CD8+ T cells. Front Immunol 2018;9:1907.
  55. Tough DF, Borrow P, Sprent J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science 1996;272:1947-1950.
  56. Waldmann TA. The biology of interleukin-2 and interleukin-15: implications for cancer therapy and vaccine design. Nat Rev Immunol 2006;6:595-601.
  57. Rubinstein MP, Kovar M, Purton JF, Cho JH, Boyman O, Surh CD, Sprent J. Converting IL-15 to a superagonist by binding to soluble IL-15Rα. Proc Natl Acad Sci U S A 2006;103:9166-9171.
  58. Stoklasek TA, Schluns KS, Lefrancois L. Combined IL-15/IL-15Rα immunotherapy maximizes IL-15 activity in vivo. J Immunol 2006;177:6072-6080.
  59. Cho JH, Kim HO, Surh CD, Sprent J. T cell receptor-dependent regulation of lipid rafts controls naive CD8+ T cell homeostasis. Immunity 2010;32:214-226.
  60. Jameson SC, Lee YJ, Hogquist KA. Innate memory T cells. Adv Immunol 2015;126:173-213.
  61. White JT, Cross EW, Burchill MA, Danhorn T, McCarter MD, Rosen HR, O'Connor B, Kedl RM. Virtual memory T cells develop and mediate bystander protective immunity in an IL-15-dependent manner. Nat Commun 2016;7:11291.
  62. Beura LK, Hamilton SE, Bi K, Schenkel JM, Odumade OA, Casey KA, Thompson EA, Fraser KA, Rosato PC, Filali-Mouhim A, et al. Normalizing the environment recapitulates adult human immune traits in laboratory mice. Nature 2016;532:512-516.
  63. Gowans JL, Knight EJ. The route of re-circulation of lymphocytes in the rat. Proc R Soc Lond, B 1964;159:257-282.
  64. Sprent J. Role of H-2 gene products in the function of T helper cells from normal and chimeric mice in vivo. Immunol Rev 1978;42:108-137.
  65. Blattman JN, Grayson JM, Wherry EJ, Kaech SM, Smith KA, Ahmed R. Therapeutic use of IL-2 to enhance antiviral T-cell responses in vivo. Nat Med 2003;9:540-547.
  66. Bachmann MF, Oxenius A. Interleukin 2: from immunostimulation to immunoregulation and back again. EMBO Rep 2007;8:1142-1148.
  67. Williams MA, Bevan MJ. Effector and memory CTL differentiation. Annu Rev Immunol 2007;25:171-192.
  68. Jameson SC, Masopust D. Diversity in T cell memory: an embarrassment of riches. Immunity 2009;31:859-871.
  69. Arens R, Schoenberger SP. Plasticity in programming of effector and memory CD8 T-cell formation. Immunol Rev 2010;235:190-205.
  70. Cui W, Kaech SM. Generation of effector CD8+ T cells and their conversion to memory T cells. Immunol Rev 2010;236:151-166.
  71. Malek TR, Castro I. Interleukin-2 receptor signaling: at the interface between tolerance and immunity. Immunity 2010;33:153-165.
  72. Liao W, Lin JX, Leonard WJ. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity 2013;38:13-25.
  73. Kalia V, Sarkar S. Regulation of effector and memory CD8 T cell differentiation by IL-2-A balancing act. Front Immunol 2018;9:2987.
  74. Mathieu C, Beltra JC, Charpentier T, Bourbonnais S, Di Santo JP, Lamarre A, Decaluwe H. IL-2 and IL-15 regulate CD8+ memory T-cell differentiation but are dispensable for protective recall responses. Eur J Immunol 2015;45:3324-3338.
  75. Decaluwe H, Taillardet M, Corcuff E, Munitic I, Law HK, Rocha B, Riviere Y, Di Santo JP. γc deficiency precludes CD8+ T cell memory despite formation of potent T cell effectors. Proc Natl Acad Sci U S A 2010;107:9311-9316.
  76. Obar JJ, Lefrancois L. Early signals during CD8 T cell priming regulate the generation of central memory cells. J Immunol 2010;185:263-272.
  77. Kalia V, Sarkar S, Subramaniam S, Haining WN, Smith KA, Ahmed R. Prolonged interleukin-2Rα expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity 2010;32:91-103.
  78. Sprent J. T and B memory cells. Cell 1994;76:315-322.
  79. Sprent J, Tough DF. T cell death and memory. Science 2001;293:245-248.
  80. D'Souza WN, Hedrick SM. Cutting edge: latecomer CD8 T cells are imprinted with a unique differentiation program. J Immunol 2006;177:777-781.
  81. Dong C. Cytokine regulation and function in T cells. Annu Rev Immunol 2021;39:51-76.
  82. West EE, Jin HT, Rasheed AU, Penaloza-Macmaster P, Ha SJ, Tan WG, Youngblood B, Freeman GJ, Smith KA, Ahmed R. PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells. J Clin Invest 2013;123:2604-2615.
  83. Beltra JC, Bourbonnais S, Bedard N, Charpentier T, Boulange M, Michaud E, Boufaied I, Bruneau J, Shoukry NH, Lamarre A, et al. IL2Rβ-dependent signals drive terminal exhaustion and suppress memory development during chronic viral infection. Proc Natl Acad Sci U S A 2016;113:E5444-E5453.
  84. Kahan SM, Bakshi RK, Ingram JT, Hendrickson RC, Lefkowitz EJ, Crossman DK, Harrington LE, Weaver CT, Zajac AJ. Intrinsic IL-2 production by effector CD8 T cells affects IL-2 signaling and promotes fate decisions, stemness, and protection. Sci Immunol 2022;7:eabl6322.
  85. Matloubian M, Concepcion RJ, Ahmed R. CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J Virol 1994;68:8056-8063.
  86. Krieg C, Letourneau S, Pantaleo G, Boyman O. Improved IL-2 immunotherapy by selective stimulation of IL-2 receptors on lymphocytes and endothelial cells. Proc Natl Acad Sci U S A 2010;107:11906-11911.
  87. Jhunjhunwala S, Hammer C, Delamarre L. Antigen presentation in cancer: insights into tumour immunogenicity and immune evasion. Nat Rev Cancer 2021;21:298-312.
  88. Ashby KM, Hogquist KA. A guide to thymic selection of T cells. Nat Rev Immunol 2023;
  89. Pulendran B, S Arunachalam P, O'Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov 2021;20:454-475.
  90. West AP, Shadel GS. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol 2017;17:363-375.
  91. Huang PW, Chang JW. Immune checkpoint inhibitors win the 2018 Nobel Prize. Biomed J 2019;42:299-306.
  92. Perdyan A, Sobocki BK, Balihodzic A, Dabrowska A, Kacperczyk J, Rutkowski J. The effectiveness of cancer immune checkpoint inhibitor retreatment and rechallenge-a systematic review. Cancers (Basel) 2023;15:3490.
  93. Dwyer CJ, Knochelmann HM, Smith AS, Wyatt MM, Rangel Rivera GO, Arhontoulis DC, Bartee E, Li Z, Rubinstein MP, Paulos CM. Fueling cancer immunotherapy with common gamma chain cytokines. Front Immunol 2019;10:263.
  94. Raeber ME, Zurbuchen Y, Impellizzieri D, Boyman O. The role of cytokines in T-cell memory in health and disease. Immunol Rev 2018;283:176-193.
  95. Smith KA, Ruscetti FW. T-cell growth factor and the culture of cloned functional T cells. Adv Immunol 1981;31:137-175.
  96. Rosenberg SA. IL-2: the first effective immunotherapy for human cancer. J Immunol 2014;192:5451-5458.
  97. Letourneau S, van Leeuwen EM, Krieg C, Martin C, Pantaleo G, Sprent J, Surh CD, Boyman O. IL-2/anti-IL-2 antibody complexes show strong biological activity by avoiding interaction with IL-2 receptor α subunit CD25. Proc Natl Acad Sci U S A 2010;107:2171-2176.
  98. Spangler JB, Tomala J, Luca VC, Jude KM, Dong S, Ring AM, Votavova P, Pepper M, Kovar M, Garcia KC. Antibodies to interleukin-2 elicit selective T cell subset potentiation through distinct conformational mechanisms. Immunity 2015;42:815-825.
  99. Arenas-Ramirez N, Zou C, Popp S, Zingg D, Brannetti B, Wirth E, Calzascia T, Kovarik J, Sommer L, Zenke G, et al. Improved cancer immunotherapy by a CD25-mimobody conferring selectivity to human interleukin-2. Sci Transl Med 2016;8:367ra166.
  100. Lee JY, Lee E, Hong SW, Kim D, Eunju O, Sprent J, Im SH, Lee YJ, Surh CD. TCB2, a new anti-human interleukin-2 antibody, facilitates heterodimeric IL-2 receptor signaling and improves anti-tumor immunity. OncoImmunology 2019;9:1681869.
  101. Zingg D, Arenas-Ramirez N, Sahin D, Rosalia RA, Antunes AT, Haeusel J, Sommer L, Boyman O. The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Reports 2017;20:854-867.
  102. Raeber ME, Rosalia RA, Schmid D, Karakus U, Boyman O. Interleukin-2 signals converge in a lymphoiddendritic cell pathway that promotes anticancer immunity. Sci Transl Med 2020;12:eaba5464.
  103. Webster KE, Walters S, Kohler RE, Mrkvan T, Boyman O, Surh CD, Grey ST, Sprent J. In vivo expansion of Treg cells with IL-2-mAb complexes: induction of resistance to EAE and long-term acceptance of islet allografts without immunosuppression. J Exp Med 2009;206:751-760.
  104. Pilat N, Wiletel M, Weijler AM, Steiner R, Mahr B, Warren J, Corpuz TM, Wekerle T, Webster KE, Sprent J. Treg-mediated prolonged survival of skin allografts without immunosuppression. Proc Natl Acad Sci U S A 2019;116:13508-13516.
  105. Yamada Y, Nguyen TT, Impellizzieri D, Mineura K, Shibuya R, Gomariz A, Haberecker M, Nilsson J, Nombela-Arrieta C, Jungraithmayr W, et al. Biased IL-2 signals induce Foxp3-rich pulmonary lymphoid structures and facilitate long-term lung allograft acceptance in mice. Nat Commun 2023;14:1383.
  106. Pilat N, Sprent J. Treg therapies revisited: tolerance beyond deletion. Front Immunol 2021;11:622810.
  107. Carmenate T, Pacios A, Enamorado M, Moreno E, Garcia-Martinez K, Fuente D, Leon K. Human IL-2 mutein with higher antitumor efficacy than wild type IL-2. J Immunol 2013;190:6230-6238.
  108. Silva DA, Yu S, Ulge UY, Spangler JB, Jude KM, Labao-Almeida C, Ali LR, Quijano-Rubio A, Ruterbusch M, Leung I, et al. De novo design of potent and selective mimics of IL-2 and IL-15. Nature 2019;565:186-191.
  109. Levin AM, Bates DL, Ring AM, Krieg C, Lin JT, Su L, Moraga I, Raeber ME, Bowman GR, Novick P, et al. Exploiting a natural conformational switch to engineer an interleukin-2 'superkine'. Nature 2012;484:529-533.
  110. Merchant R, Galligan C, Munegowda MA, Pearce LB, Lloyd P, Smith P, Merchant F, To MD. Fine-tuned long-acting interleukin-2 superkine potentiates durable immune responses in mice and non-human primate. J Immunother Cancer 2022;10:e003155.
  111. Sahin D, Arenas-Ramirez N, Rath M, Karakus U, Humbelin M, van Gogh M, Borsig L, Boyman O. An IL-2-grafted antibody immunotherapy with potent efficacy against metastatic cancer. Nat Commun 2020;11:6440.
  112. Lopes JE, Fisher JL, Flick HL, Wang C, Sun L, Ernstoff MS, Alvarez JC, Losey HC. ALKS 4230: a novel engineered IL-2 fusion protein with an improved cellular selectivity profile for cancer immunotherapy. J Immunother Cancer 2020;8:e000673.
  113. Charych DH, Hoch U, Langowski JL, Lee SR, Addepalli MK, Kirk PB, Sheng D, Liu X, Sims PW, VanderVeen LA, et al. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin Cancer Res 2016;22:680-690.
  114. Sznol M, Rizvi N. Teaching an old dog new tricks: re-engineering IL-2 for immuno-oncology applications. J Immunother Cancer 2023;11:e006346.
  115. Raeber ME, Sahin D, Boyman O. Interleukin-2-based therapies in cancer. Sci Transl Med 2022;14:eabo5409.
  116. Raeber ME, Sahin D, Karakus U, Boyman O. A systematic review of interleukin-2-based immunotherapies in clinical trials for cancer and autoimmune diseases. EBioMedicine 2023;90:104539.
  117. Hashimoto M, Araki K, Cardenas MA, Li P, Jadhav RR, Kissick HT, Hudson WH, McGuire DJ, Obeng RC, Wieland A, et al. PD-1 combination therapy with IL-2 modifies CD8+ T cell exhaustion program. Nature 2022;610:173-181.
  118. Codarri Deak L, Nicolini V, Hashimoto M, Karagianni M, Schwalie PC, Lauener L, Varypataki EM, Richard M, Bommer E, Sam J, et al. PD-1-cis IL-2R agonism yields better effectors from stem-like CD8+ T cells. Nature 2022;610:161-172.
  119. Tichet M, Wullschleger S, Chryplewicz A, Fournier N, Marcone R, Kauzlaric A, Homicsko K, Deak LC, Umana P, Klein C, et al. Bispecific PD1-IL2v and anti-PD-L1 break tumor immunity resistance by enhancing stem-like tumor-reactive CD8+ T cells and reprogramming macrophages. Immunity 2023;56:162-179.e6.
  120. Ren Z, Zhang A, Sun Z, Liang Y, Ye J, Qiao J, Li B, Fu YX. Selective delivery of low-affinity IL-2 to PD-1+T cells rejuvenates antitumor immunity with reduced toxicity. J Clin Invest 2022;132:e153604.
  121. Wu W, Chia T, Lu J, Li X, Guan J, Li Y, Fu F, Zhou S, Feng Y, Deng J, et al. IL-2Rα-biased agonist enhances antitumor immunity by invigorating tumor-infiltrating CD25+CD8+ T cells. Nat Can 2023;4:1309-1325.
  122. Mo F, Yu Z, Li P, Oh J, Spolski R, Zhao L, Glassman CR, Yamamoto TN, Chen Y, Golebiowski FM, et al. An engineered IL-2 partial agonist promotes CD8+ T cell stemness. Nature 2021;597:544-548.
  123. Guan Q, Han M, Guo Q, Yan F, Wang M, Ning Q, Xi D. Strategies to reinvigorate exhausted CD8+ T cells in tumor microenvironment. Front Immunol 2023;14:1204363.
  124. Muhammad S, Fan T, Hai Y, Gao Y, He J. Reigniting hope in cancer treatment: the promise and pitfalls of IL-2 and IL-2R targeting strategies. Mol Cancer 2023;22:121.
  125. Li Y, Strick-Marchand H, Lim AI, Ren J, Masse-Ranson G, Dan Li , Jouvion G, Rogge L, Lucas S, Bin Li , et al. Regulatory T cells control toxicity in a humanized model of IL-2 therapy. Nat Commun 2017;8:1762.
  126. Smith C, Martinez M, Peet J, Khanna R. Differential outcome of IL-2/anti-IL-2 complex therapy on effector and memory CD8+ T cells following vaccination with an adenoviral vector encoding EBV epitopes. J Immunol 2011;186:5784-5790.
  127. Tsyklauri O, Chadimova T, Niederlova V, Kovarova J, Michalik J, Malatova I, Janusova S, Ivashchenko O, Rossez H, Drobek A, et al. Regulatory T cells suppress the formation of potent KLRK1 and IL-7R expressing effector CD8 T cells by limiting IL-2. eLife 2023;12:e79342.
  128. Xu Y, Carrascosa LC, Yeung YA, Chu ML, Yang W, Djuretic I, Pappas DC, Zeytounian J, Ge Z, de Ruiter V, et al. An engineered IL15 cytokine mutein fused to an anti-PD1 improves intratumoral T-cell function and antitumor immunity. Cancer Immunol Res 2021;9:1141-1157.
  129. Shen J, Zou Z, Guo J, Cai Y, Xue D, Liang Y, Wang W, Peng H, Fu YX. An engineered concealed IL-15-R elicits tumor-specific CD8+T cell responses through PD-1-cis delivery. J Exp Med 2022;219:e20220745