DOI QR코드

DOI QR Code

Buckling analysis of piles in weak single-layered soil with consideration of geometric nonlinearities

  • Emina Hajdo (Faculty of Civil Engineering, University of Sarajevo) ;
  • Emina Hadzalic (Faculty of Civil Engineering, University of Sarajevo) ;
  • Adnan Ibrahimbegovic (Universite de Technologie de Compiegne-Alliance Sorbonne Universite)
  • Received : 2024.01.22
  • Accepted : 2024.02.27
  • Published : 2024.06.25

Abstract

This paper presents a numerical model for buckling analysis of slender piles, such as micropiles. The model incorporates geometric nonlinearities to provide enhanced accuracy and a more comprehensive representation of pile buckling behavior. Specifically, the pile is represented using geometrically nonlinear beams with the von Karman deformation measure. The lateral support provided by the surrounding soil is modeled using the spring approach, with the spring stiffness determined according to the undrained shear strength of the soil. The numerical model is tested across a wide range of pile slenderness ratios and undrained shear strengths of the surrounding soil. The numerical results are validated against analytical solutions. Furthermore, the influence of various pile bottom end boundary conditions on the critical buckling force is investigated. The implications of the obtained results are thoroughly discussed.

Keywords

References

  1. Bergfelt, A. (1957), "The axial and lateral load bearing capacity, and failure by buckling of piles in soft clay", Proc. 4th Int. Conf. on Soil Mechanics and Foundation Engineering, London, 2, 8-13.
  2. Bhattacharya, S., Carrington, T.M. and Aldridge, T.R. (2005), "Buckling considerations in pile design", Proceedings of the International Symposium on Frontiers in Offshore Geotechnics, 815-821. 
  3. Bjerrum, L. (1957), "Norwegian experiences with steel piles to rock", Geotechnique, 7(2), 73-96. https://doi.org/10.1680/geot.1957.7.2.73.
  4. Bruce, D.A., Cadden, A.W. and Sabatini, P.J. (2005), "Practical advice for foundation design-micropiles for structural support", Contemporary Issues in Foundation Engineering, 1-25.
  5. Cadden, A.W. and Gomez, J.E. (2002), "Buckling of micropiles-a review of historic research and recent experiences", ADSC-IAF Micropile Committee.
  6. Chen, Y.H., Chen, L., Xu, K., Liu, L. and Ng, C.W.W. (2013), "Study on critical buckling load calculation method of piles considering passive and active earth pressure", Struct. Eng. Mech., 48(3), 367-382. https://doi.org/10.12989/sem.2013.48.3.367.
  7. Crispin, J.J. and Mylonakis, G.E. (2021), "Simplified models for axial static and dynamic analysis of pile foundations", Analysis of Pile Foundations Subject to Static and Dynamic Loading, CRC Press.
  8. Davisson, M.T. (1963), "Estimating buckling loads for piles", Proceedings of the 2nd Pan-American Conference on Soil Mechanics and Foundation Engineering, Brazil, 2, 351-369.
  9. Engesser, F. (1889), Uber Knickfestigkeit Gerader Stabe, Verlag Von Wilhelm Ernst & Sohn, Berlin, Germany.
  10. Gabr, M.A., Wang, J.J. and Zhao, M. (1997), "Buckling of piles with general power distribution of lateral subgrade reaction", J. Geotech. Geoenviron. Eng., 123(2), 123-130. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:2(123).
  11. Gatto, M.P.A. and Montrasio, L. (2021), "Analysis of the behaviour of very slender piles: focus on the ultimate load", Int. J. Civil Eng., 19, 145-153. https://doi.org/10.1007/s40999-020-00547-y.
  12. Hajdo, E., Hadzalic, E. and Ibrahimbegovic, A. (2022), "Linear Buckling Analysis of Structures on the Elastic Support", International Symposium on Innovative and Interdisciplinary Applications of Advanced Technologies, 92-102.
  13. Hajdo, E., Ibrahimbegovic, A. and Dolarevic, S. (2020), "Buckling analysis of complex structures with refined model built of frame and shell finite elements", Couple. Syst. Mech., 9(1), 29-46. https://doi.org/10.12989/csm.2020.9.1.029.
  14. Hajdo, E., Mejia-Nava, R.A., Imamovic, I. and Ibrahimbegovic, A. (2021), "Linearized instability analysis of frame structures under nonconservative loads: Static and dynamic approach", Couple. Syst. Mech., 10(1), 79. https://doi.org/10.12989/csm.2021.10.1.079.
  15. Heelis, M.E., Pavlovic, M.N. and West, R.P. (2004), "The analytical prediction of the buckling loads of fully and partially embedded piles", Geotechnique, 54(6), 363-373. https://doi.org/10.1680/geot.2004.54.6.363.
  16. Hegazy, A.A.E. (2014), "Analysis of buckling load micropiles embedded in a weak soil under vertical axial loads", Int. J. Civil Eng., 3, 155-166.
  17. Ibrahimbegovic, A. (2009), Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Springer, Berlin, Germany.
  18. Ibrahimbegovic, A. and Frey, F. (1993), "Finite element analysis of linear and non-linear planar deformations of elastic initially curved beams", Int. J. Numer. Meth. Eng., 36(19), 3239-3258. https://doi.org/10.1002/nme.1620361903.
  19. Ibrahimbegovic, A., Hajdo, E. and Dolarevic, S. (2013), "Linear instability or buckling problems for mechanical and coupled thermomechanical extreme conditions", Couple. Syst. Mech., 2(4), 349-374.
  20. Imamovic, I., Ibrahimbegovic, A. and Hajdo, E. (2019), "Geometrically exact initially curved Kirchhoff's planar elasto-plastic beam", Couple. Syst. Mech., 8(6), 537-553. https://doi.org/10.12989/csm.2019.8.6.537.
  21. Jelenic, G. and Crisfield, M. (1999), "Geometrically exact 3D beam theory: Implementation of a strain-invariant finite element for statics and dynamics", Comput. Meth. Appl. Mech. Eng., 171(1-2), 141-171. https://doi.org/10.1016/S0045-7825(98)00249-7.
  22. Knappett, J.A. and Madabhushi, S.P.G. (2009), "Influence of axial load on lateral pile response in liquefiable soils. Part II: numerical modelling", Geotechnique, 59(7), 583-592. https://doi.org/10.1680/geot.8.009.3749.
  23. Masjedi, P.K., Maheri, A. and Weaver, P.M. (2019), "Large deflection of functionally graded porous beams based on a geometrically exact theory with a fully intrinsic formulation", Appl. Math. Model., 76, 938-957. https://doi.org/10.1016/j.apm.2019.07.018.
  24. Meier, C., Popp, A. and Wall, W.A. (2019), "Geometrically exact finite element formulations for slender beams: Kirchhoff-Love theory versus Simo-Reissner theory", Arch. Comput. Meth. Eng., 26(1), 163-243. https://doi.org/10.1007/s11831-017-9232-5.
  25. Mejia-Nava, R.A., Imamovic, I., Hajdo, E. and Ibrahimbegovic, A. (2022), "Nonlinear instability problem for geometrically exact beam under conservative and non-conservative loads", Eng. Struct., 265, 114446. https://doi.org/10.1016/j.engstruct.2022.114446.
  26. Nadeem, M., Chakraborty, T. and Matsagar, V. (2015), "Nonlinear buckling analysis of slender piles with geometric imperfections", J. Geotech. Geoenviron. Eng., 141(1), 06014014. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001189.
  27. Ofner, R. and Wimmer, H. (2007), "Buckling resistance of micropiles in varying soil layers", Bautechnik, 84(12), 881-890.
  28. Poulos, H.G. and Davis, E.H. (1980), Pile Foundation Analysis and Design, Vol. 397, Wiley, New York.
  29. Prakash, S. (1987), "Buckling loads of fully embedded vertical piles", Comput. Geotech., 4(2), 61-83. https://doi.org/10.1016/0266-352X(87)90011-5.
  30. Reese, L.C., Wang, S.T., Isenhower, W.M., Arrellaga, J.A., Hendrix, J. (2000), LPILE Plus Version 4.0 Technical Manual, Ensoft Inc., Austin, USA.
  31. Sabatini, P.J., Armour, T., Groneck, P., Keeley, J.W. and Tanyu, B. (2005), "Micropile design and construction (reference manual for NHI Course 132078) (No. FHWA-NHI-05-039)", Department of Transportation. Federal Highway Administration, United States.
  32. Timoshenko, S.P. and Gere, J.M. (1961), Theory of Elastic Stability, McGraw-Hill, New York.
  33. Tojaga, V., Kulachenko, A., O stlund, S. and Gasser, T.C. (2021), "Modeling multi-fracturing fibers in fiber networks using elastoplastic Timoshenko beam finite elements with embedded strong discontinuities-Formulation and staggered algorithm", Comput. Meth. Appl. Mech. Eng., 384, 113964. https://doi.org/10.1016/j.cma.2021.113964.
  34. Vogt, N., Vogt, S. and Kellner, C. (2009), "Buckling of slender piles in soft soils", Bautechnik, 86(S1), 98-112. https://doi.org/10.1002/bate.200910046.
  35. Zhang, X., Tang, L., Ling, X. and Chan, A. (2020), "Critical buckling load of pile in liquefied soil", Soil Dyn. Earthq. Eng., 135, 106197. https://doi.org/10.1016/j.soildyn.2020.106197.
  36. Zhao, M.H., He, W. and Li, Q.S. (2010), "Post-buckling analysis of piles by perturbation method", Struct. Eng. Mech., 35(2), 191-203. https://doi.org/10.12989/sem.2010.35.2.191.
  37. Zienkiewicz, O.C. and Taylor, R.L. (2005), The Finite Element Method, Vols. I, II, III, Elsevier.