DOI QR코드

DOI QR Code

A NON-NEWTONIAN APPROACH IN DIFFERENTIAL GEOMETRY OF CURVES: MULTIPLICATIVE RECTIFYING CURVES

  • Muhittin Evren Aydin (Department of Mathematics Firat University) ;
  • Aykut Has (Department of Mathematics Kahramanmaras Sutcu Imam University) ;
  • Beyhan Yilmaz (Department of Mathematics Kahramanmaras Sutcu Imam University)
  • Received : 2023.08.24
  • Accepted : 2024.01.26
  • Published : 2024.05.31

Abstract

In this paper, we study the rectifying curves in multiplicative Euclidean space of dimension 3, i.e., those curves for which the position vector always lies in its rectifying plane. Since the definition of rectifying curve is affine and not metric, we are directly able to perform multiplicative differential-geometric concepts to investigate such curves. By several characterizations, we completely classify the multiplicative rectifying curves by means of the multiplicative spherical curves.

Keywords

Acknowledgement

This study was supported by Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant Number 123F055. The authors thank to TUBITAK for their supports.

References

  1. D. Aniszewska, Multiplicative Runge-Kutta methods, Nonlinear Dyn. 50 (2007), 265-272. https://doi.org/10.1007/s11071-006-9156-3
  2. D. Aniszewska and M. Rybaczuk, Analysis of the multiplicative Lorenz system, Chaos Solitons Fractals. 25 (2005), no. 1, 79-90. https://doi.org/10.1016/j.chaos.2004.09.060
  3. D. Aniszewska and M. Rybaczuk, Lyapunov type stability and Lyapunov exponent for exemplary multiplicative dynamical systems, Nonlinear Dynam. 54 (2008), no. 4, 345-354. https://doi.org/10.1007/s11071-008-9333-7
  4. M. E. Aydin, Effect of local fractional derivatives on Riemann curvature tensor, Ex. Countex. 5 (2024), 100134. https://doi.org/10.1016/j.exco.2023.100134
  5. M. E. Aydin, A. Mihai, and A. Yokus, Applications of fractional calculus in equiaffine geometry: plane curves with fractional order, Math. Methods Appl. Sci. 44 (2021), no. 17, 13659-13669. https://doi.org/10.1002/mma.7649
  6. D. Baleanu and S. I. Vacaru, Constant curvature coefficients and exact solutions in fractional gravity and geometric mechanics, Cent. Eur. J. Phys. 9 (2011), no. 5, 1267-1279. https://doi.org/10.2478/s11534-011-0040-5
  7. D. Baleanu and S. I. Vacaru, Fractional almost Kahler-Lagrange geometry, Nonlinear Dynam. 64 (2011), no. 4, 365-373. https://doi.org/10.1007/s11071-010-9867-3
  8. A. E. Bashirov, E. Misirli, and A. Ozyapici, Multiplicative calculus and its applications, J. Math. Anal. Appl. 337 (2008), no. 1, 36-48. https://doi.org/10.1016/j.jmaa.2007.03.081
  9. A. E. Bashirov, E. Misirli, Y. Tandogdu, and A. Ozyapici, On modeling with multiplicative differential equations, Appl. Math. J. Chinese Univ. Ser. B 26 (2011), no. 4, 425-438. https://doi.org/10.1007/s11766-011-2767-6
  10. A. E. Bashirov and S. Norozpour, On an alternative view to complex calculus, Math. Methods Appl. Sci. 41 (2018), no. 17, 7313-7324. https://doi.org/10.1002/mma.4827
  11. A. E. Bashirov and M. Riza, On complex multiplicative differentiation, TWMS J. Appl. Eng. Math. 1 (2011), no. 1, 75-85.
  12. A. F. Cakmak and F. Basar, Some new results on sequence spaces with respect to non-Newtonian calculus, J. Inequal. Appl. 2012 (2012), 228, 17 pp. https://doi.org/10.1186/1029-242X-2012-228
  13. B.-Y. Chen, When does the position vector of a space curve always lie in its rectifying plane?, Amer. Math. Monthly 110 (2003), no. 2, 147-152. https://doi.org/10.2307/3647775
  14. B.-Y. Chen, Rectifying curves and geodesics on a cone in the Euclidean 3-space, Tamkang J. Math. 48 (2017), no. 2, 209-214. https://doi.org/10.5556/j.tkjm.48.2017.2382
  15. B.-Y. Chen and F. J. E. Dillen, Rectifying curves as centrodes and extremal curves, Bull. Inst. Math. Acad. Sinica 33 (2005), no. 2, 77-90.
  16. F. Cordova-Lepe, The multiplicative derivative as a measure of elasticity in economics, TEMAT-Theaeteto Atheniensi Mathematica 2 (2006), no. 3, 7 pages.
  17. F. Cordova-Lepe, R. Del Valle, and K. Vilches, A new approach to the concept of linearity. Some elements for a multiplicative linear algebra, Int. J. Comput. Math. 97 (2020), no. 1-2, 109-119. https://doi.org/10.1080/00207160.2018.1437265
  18. S. Deshmukh, B.-Y. Chen, and S. H. Alshammari, On rectifying curves in Euclidean 3-space, Turkish J. Math. 42 (2018), no. 2, 609-620. https://doi.org/10.3906/mat-1701-52
  19. D. A. Filip and C. Piatecki, A non-newtonian examination of the theory of exogenous economic growth, Math. Aeterna 4 (2014), no. 1-2, 101-117.
  20. L. Florack and H. van Assen, Multiplicative calculus in biomedical image analysis, J. Math. Imaging Vision 42 (2012), no. 1, 64-75. https://doi.org/10.1007/s10851-011-0275-1
  21. S. G. Georgiev, Multiplicative Differential Geometry, CRC, Boca Raton, FL, 2022.
  22. S. G. Georgiev and K. Zennir, Multiplicative Differential Calculus, CRC, Boca Raton, FL, 2023.
  23. S. G. Georgiev, K. Zennir, and A. Boukarou, Multiplicative Analytic Geometry, CRC, Boca Raton, FL, 2023.
  24. S. Goktas, H. Koyunbakan, and E. Yilmaz, Multiplicative conformable fractional Dirac system, Turkish J. Math. 46 (2022), no. 3, 973-990. https://doi.org/10.55730/1300-0098.3136
  25. S. Goktas, E. Yilmaz, and A. C. Yar, Some spectral properties of multiplicative Hermite equation, Fundam. J. Math. Appl. 5 (2022), no. 1, 32-41. https://doi.org/10.33401/fujma.973155
  26. U. Gozutok, H. A. Coban, and Y. Sagiroglu, Frenet frame with respect to conformable derivative, Filomat 33 (2019), no. 6, 1541-1550. https://doi.org/10.2298/fil1906541g
  27. M. Grossman, Bigeometric Calculus, Archimedes Found., Rockport, MA, 1983.
  28. M. Grossman and R. Katz, Non-Newtonian Calculus, Lee Press, Pigeon Cove, MA, 1972.
  29. T. Gulsen, E. Yilmaz, and S. Goktas, Multiplicative Dirac system, Kuwait J. Sci. 49 (2022), no. 3, 11 pp. https://doi.org/10.48129/kjs.13411
  30. M. Jianu, S. Achimescu, L. Daus, A. Mihai, O. A. Roman, and Daniel Tudor, Characterization of rectifying curves by their involutes and evolutes, Mathematics 9 (2021), no. 23, 3077. https://doi.org/10.3390/math9233077
  31. U. Kadak and H. Efe, The construction of Hilbert spaces over the non-Newtonian field, Int. J. Anal. 2014 (2014), Art. ID 746059, 10 pp. https://doi.org/10.1155/2014/746059
  32. G. Macsim, A. Mihai, and A. Olteanu, On rectifying-type curves in a Myller configuration, Bull. Korean Math. Soc. 56 (2019), no. 2, 383-390. https://doi.org/10.4134/BKMS.b180279
  33. E. Misirli and Y. Gurefe, Multiplicative Adams Bashforth-Moulton methods, Numer. Algorithms 57 (2011), no. 4, 425-439. https://doi.org/10.1007/s11075-010-9437-2
  34. M. Mora, F. Cordova-Lepe, and R. Del-Valle, A non-Newtonian gradient for contour detection in images with multiplicative noise, Pattern Recognition Letters 33 (2012), no. 10, 1245-1256. https://doi.org/10.1016/j.patrec.2012.02.012
  35. A. Ozyapici and B. Bilgehan, Finite product representation via multiplicative calculus and its applications to exponential signal processing, Numer. Algorithms 71 (2016), no. 2, 475-489. https://doi.org/10.1007/s11075-015-0004-8
  36. H. Ozyapici, I. Dalci, and A. Ozyapici, Integrating accounting and multiplicative calculus: an effective estimation of learning curve, Comp. Math. Org. Th. 23 (2017), 258-270. https://doi.org/10.1007/s10588-016-9225-1
  37. A. Ozyapici, M. Riza, B. Bilgehan, and A. E. Bashirov, On multiplicative and Volterra minimization methods, Numer. Algorithms 67 (2014), no. 3, 623-636. https://doi.org/10.1007/s11075-013-9813-9
  38. M. Riza, A. Ozyapici, and E. Misirli, Multiplicative finite difference methods, Quart. Appl. Math. 67 (2009), no. 4, 745-754. https://doi.org/10.1090/S0033-569X-09-01158-2
  39. M. Rybaczuk, A. Kedzia, and W. Zielinski, The concept of physical and fractal dimension. II. The differential calculus in dimensional spaces, Chaos Solitons Fractals 12 (2001), no. 13, 2537-2552. https://doi.org/10.1016/S0960-0779(00)00231-9
  40. D. F. M. Torres, On a non-Newtonian calculus of variations, Axioms 10 (2021), no. 3, 171. https://doi.org/10.3390/axioms10030171
  41. A. Uzer, Multiplicative type complex calculus as an alternative to the classical calculus, Comput. Math. Appl. 60 (2010), no. 10, 2725-2737. https://doi.org/10.1016/j.camwa.2010.08.089
  42. V. Volterra and B. Hostinsky, Operations Infinitesimales Lineares, Herman, Paris, 1938.
  43. M. Waseem, M. A. Noor, F. A. Shah, and K. I. Noor, An efficient technique to solve nonlinear equations using multiplicative calculus, Turkish J. Math. 42 (2018), no. 2, 679-691. https://doi.org/10.3906/mat-1611-95
  44. T. Yajima and H. Nagahama, Geometric structures of fractional dynamical systems in non-Riemannian space: applications to mechanical and electromechanical systems, Ann. Phys. 530 (2018), no. 5, 1700391, 9 pp. https://doi.org/10.1002/andp.201700391
  45. T. Yajima, S. Oiwa, and K. Yamasaki, Geometry of curves with fractional-order tangent vector and Frenet-Serret formulas, Fract. Calc. Appl. Anal. 21 (2018), no. 6, 1493-1505. https://doi.org/10.1515/fca-2018-0078
  46. N. Yalcin, The solutions of multiplicative Hermite differential equation and multiplicative Hermite polynomials, Rend. Circ. Mat. Palermo (2) 70 (2021), no. 1, 9-21. https://doi.org/10.1007/s12215-019-00474-5
  47. N. Yalcin and E. Celik, Solution of multiplicative homogeneous linear differential equations with constant exponentials, New Trends Math. Sci. 6 (2018), no. 2, 58-67. https://doi.org/10.20852/ntmsci.2018.270
  48. M. Yazici and H. Selvitopi, Numerical methods for the multiplicative partial differential equations, Open Math. 15 (2017), no. 1, 1344-1350. https://doi.org/10.1515/math-2017-0113
  49. E. Yilmaz, Multiplicative Bessel equation and its spectral properties, Ricerche Mat. (2021). https://doi.org/10.1007/s11587-021-00674-1