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TRANSITION PROBABILITY OF A DISCRETE GEODESIC

FLOW ON THE STANDARD NON-UNIFORM QUOTIENT

OF PGL3

Sanghoon Kwon

Abstract. We describe the local transition probability of a singular di-
agonal action on the standard non-uniform quotient of PGL3 associated

to the type 1 geodesic flow. As a consequence, we deduce the property of

strongly positive recurrence.

1. Introduction

In this paper, we discuss the strongly positive recurrence property of discrete
geodesic flows in the standard arithmetic quotient of the affine building for
PGL3. Strongly positive recurrence property of countable topological Markov
chains was defined in [12]. If a directed graph of a Markov chain is not strongly
positive recurrent, then the entropy is mainly concentrated near infinity in the
sense that it is supported by the infinite paths that spend most of their time
outside a finite subgraph. Recently, [13] proved the effective intrinsic ergodicity
for all strongly positive recurrent topological Markov shifts. Namely, they
provide an effective bound of the distance between an invariant measure and
the measure of maximal entropy in terms of the difference of their entropies.
In [5], the authors investigate the notion of strongly positive recurrence of
geodesic flows on non-compact negatively curved manifolds, using the entropy
and pressure at infinity. Our setting, the geodesic flow on an affine building of
rank 2, can be viewed as an example of a space with non-positive curvature.

Let Fq be the finite field of order q and let Fq(t) be the field of rational
functions over Fq. The absolute value ∥ · ∥ of Fq(t) is defined for any f ∈ Fq(t),
by

∥f∥ := qdeg(g)−deg(h)

for g, h are polynomials over Fq satisfying f = g
h . The completion of Fq(t) with

respect to ∥ ·∥, the field of formal Laurent series in t−1, is denoted by Fq((t−1)),
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i.e.,

Fq((t−1)) :=

{ ∞∑
n=−N

ant
−n : N ∈ Z, an ∈ Fq

}
.

The valuation ring O is the subring of power series

Fq[[t−1]] :=

{ ∞∑
n=0

ant
−n : an ∈ Fq

}
.

Let G be the group PGL(3,Fq((t−1))), Γ be the standard non-uniform arith-
metic lattice PGL(3,Fq[t]) of G and K be a maximal compact subgroup
PGL(3,O) of G. Denote by B the building B3(Fq((t−1))) associated to the
group G. It is the 2-dimensional contractible simplicial complex defined as
follows. We say two O-lattices L and L′ of rank 3 are in the same equivalence
class if L = sL′ for some s ∈ Fq((t−1))×. The set of the equivalence classes [L]
will be the set of vertices of B. For given k-vertices [L1], [L2], [L3], they form
a 2-dimensional simplex in B if

t−1Λ1 ⊂ Λ3 ⊂ Λ2 ⊂ Λ1

for some Λi ∈ [Li]. Then, the set of vertices of B may be identified with G/K.
For a more comprehensive and detailed discussion about Bruhat-Tits build-

ing, one may follow [1]. We also remark that [10] investigated the dynamical
properties of the diagonal action in the compact quotient of a p-adic Cheval-
ley group. This paper explores one of the non-compact generalization of the
dynamical system discussed in [10].

The type τ(x) of vertex x = gK is defined by logq∥ det(g)∥ (mod 3). Each
apartment of B is a Euclidean plane tiled with equilateral triangles. The type
τ(v → w) of a directed edge v → w from a vertex v to a vertex w is defined
to be τ(w)− τ(v). If e is a directed edge from v to w in B, then we denote by
s(e) = v (source) and t(e) = w (target). A sequence of e1, e2, . . . , en of directed
edges in B is called a path if t(ek) = s(ek+1) for all 1 ≤ k ≤ n−1. If it consists
of type i directed edges, then it is called a path of type i. A path e1, e2, . . . , en
in B is called a geodesic path if it is a part of straight line in an apartment in
B. Equivalently, it is a path with the condition that s(ek), s(ek+1) = t(ek),
t(ek+1) do not form a chamber in B for all 1 ≤ k ≤ n− 1. See Figure 1.

As we mentioned earlier, we explore the recurrence property of the type
1 geodesic flow in Γ\B, that is, the shift map [(en)n∈Z]Γ 7→ [(en+1)n∈Z]Γ for
type 1 geodesics (en)n∈Z in B. Consider a standard type 1 bi-infinite geodesic
s = (. . . , v−1, v0, v1, . . .), where vn = diag(tn, 1, 1)K in B. We observe that

g

tn 0 0
0 1 0
0 0 1

K =

tn 0 0
0 1 0
0 0 1

K
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allowed not allowed

s(ek)

s(ek+1) = t(ek)

t(ek+1) s(ek) s(ek+1) = t(ek)

t(ek+1)

Figure 1. Admissible geodesic paths

for all n ∈ Z if and only if g is an element of K of the form

g =

∗ 0 0
0 ∗ ∗
0 ∗ ∗

 .

Thus, if we denote by a the element diag(t, 1, 1) in G, then the type 1 geo-
desic flow system corresponds to the right multiplication action Ta : Γ\G/M →
Γ\G/M given by Ta(ΓgM) = ΓgaM for

M =

m =

k11 0 0
0 k22 k23
0 k32 k33

 : m ∈ K

 .

We will investigate the asymptotic behavior of the number of periodic orbits
of the system Ta : Γ\G/M → Γ\G/M .

Let πK : Γ\G/M → Γ\G/K be the natural projection map and denote by o
the identity coset ΓeK in Γ\G/K. Let fn(o) denote the number of first return
cycles at o of length n. Namely,

fn(o)=#
{
x∈Γ\G/M : πK(x)=o, Tna (x)=x, n=min{k>0: πK(T ka (x))=o}

}
.

Also for each x ∈ Γ\G/K, let gn(x) denote the number

gn(x) = #{x ∈ Γ\G/M : πK(x) = x, Tna (x) = x}

of closed cycles based at x of length n.
Additionally, since the period of Ta on Γ\G/M is 3, the Gurevich entropy h

(based at x) of Ta is defined by

hTa
= lim
n→∞

1

3n
log g3n(x).

This value does not depend on the choice of x. The following is the main
theorem of this article.
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Theorem 1.1. The type 1 discrete geodesic flow system (Γ\G/M,Ta) is strong-
ly positive recurrent in the sense that

lim sup
n→∞

1

n
log fn(o) < hTa

.

We prove this theorem in Section 3. In fact, we prove that hTa
= 2 log q and

lim sup
n→∞

1
n log fn(o) =

5
3 log q.

It should be noted that [2] demonstrates the logarithmic law of geodesic
flows in the non-compact quotient of affine buildings. It would be interesting
if we could establish a theorem concerning the limiting distribution of extreme
values, similar to the result obtained in [9] for geometrically finite quotients of
trees.

2. Reduction to countable Markov shift

Recall that s = (. . . , v−1, v0, v1, . . .) is defined by the sequence of vertices
vn = diag(tn, 1, 1)K of the standard type 1 geodesic in B. Let (Y, σ) be the
shift space given by

Y = {y ∈ (G/K)Z : y = (yn)n corresponds to a type 1 geodesic in B}

and σ : Y → Y , σ((yn)n) = (yn+1)n. Let Φ: G/M → Y be the bijective map
given by Φ(gM) = gs = (. . . , gv−2, gv−1, gv0, gv1, gv2, . . .). Then, we have
Φ ◦ Ta = σ ◦ Φ:

G/M
Ta //

Φ

��

G/M

Φ

��
Y

σ // Y

Now let X = Y/ ∼ where y ∼ y′ ⇔ y = γy′ for some γ ∈ Γ. Then, the
following diagram also commutes:

Γ\G/M Ta //

ϕ

��

Γ\G/M

ϕ

��
X

σ // X

Let

I =


k11 k12 k13
k21 k22 k23
k31 k32 k33

 ∈ K : ∥k21∥, ∥k31∥ ≤ q−1


be the Iwahori subgroup of G, which is the stabilizer of the type 1 directed
edge K → aK in B. Then, the set of type 1 directed edges can be identified
with G/I.
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Now let E={e ∈ (G/I)Z : e=(en)n corresponds to a type 1 geodesic in B}.
In other words, (en)n ∈ E if t(en) = s(en+1) and s(en), s(en+1), t(en+1) do not
form a chamber in B for all n ∈ Z, then the map Ψ: Y → E given by

Ψ((yn)n∈Z) = (en)n∈Z (where s(en) = yn, t(en) = yn+1)

will be the natural bijection. Now, we say that a sequence d ∈ (Γ\G/I)Z of
directed edges in Γ\B is admissible if d = (dn)n may lift to an element in E .
Denote by D the set {d ∈ (Γ\G/I)Z : d is admissible} of admissible sequences.
If we define the equivalence relation on E by e ∼ e′ ⇔ e = γe′ for some γ ∈ Γ,
then the map Ψ induces a surjection ψ fromX to D. The relation p3◦Ψ = ψ◦p2
also holds.

Let us also denote by p1, p2, p3 the projection mapG/M → Γ\G/M , Y → X,
and E → D, respectively. The following commutative diagram describes the
notations:

G/M
Φ

≃ //

p1

��

Y
Ψ

≃ //

p2

��

E

p3

��
Γ\G/M

πK

��

ϕ

≃ // X
ψ
// D

Γ\G/K

We recall that

gn(o) = #{x ∈ Γ\G/M : πK(x) = o, Tna (x) = x}

and

fn(o)=#
{
x ∈ Γ\G/M :πK(x)=o, Tna (x)=x, n=min{k > 0:πK(T ka (x))=o}

}
.

Let us define

Dper,n = {d ∈ D : d0 = ΓeI, σn(d) = d},
Dprim,n =

{
d ∈ D : d0 = ΓeI, σn(d) = d, n = min{k > 0: dk = ΓeI}

}
.

Lemma 2.1. We have

gn(o) =
∑

d∈Dper,n

∣∣p−1
3 (d)

∣∣ and fn(o) =
∑

d∈Dprim,n

∣∣p−1
3 (d)

∣∣.
Proof. Using the isomorphism ϕ : Γ\G/M → X, we may identify Γ\G/M to X.
Let x = (xn)n∈Z be an element in X satisfying πK(x) = o, Tna (x) = x. It cor-
responds to a finite admissible sequence (x0, x1, . . . , xn−1, xn) in (G/K)n+1/ ∼
for which x0 ∈ G/K is a lift of o = ΓeK and there exists γx0 = xn for some
γ ∈ Γ. Moreover, we may choose a unique representative (v0, y1, . . . , yn−1, γv0)
in (G/K)n+1. Note also that ψ(x) is an element in Dper,n.
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Conversely, let d ∈ Dper,n. Since d is admissible, there is an x = (xn)n∈Z ∈
X such that ψ(x) = d. Furthermore, πK(x) = o and Tna (x) = x. From the
above observation, we have∣∣{x∈X :Ψ(x)=d}

∣∣= ∣∣{y=(v0, y1, . . . , yn−1, γv0)∈(G/K)n+1 :y is admissible,

p3(Ψ(y))=(d0, . . . , dn)}
∣∣

=
∣∣{y ∈ Y : p3(Ψ(y))=d}

∣∣
which yields

#{x ∈ Γ\G/M : πK(x) = o, Tna (x) = x} =
∑

d∈Dper,n

∣∣p−1
3 (d)

∣∣.
Similar argument also gives the second equality. □

3. Proof of Theorem 1.1

In this section, we prove Theorem 1.1. Namely, we show that

lim sup
n→∞

1

n
log fn(o) < hTa = lim

n→∞

1

3n
log g3n(o).

The proof goes through the explicit calculation of fn(o) and gn(o) by investi-
gating local transition probabilities of Markov shift (D, σ).

First, the Birkhoff decomposition says that given every g ∈ G, there exists
a unique pair of non-negative integers (m,n) with 0 ≤ n ≤ m such that

g ∈ Γ

tm 0 0
0 tn 0
0 0 1

K

holds. For the reduction algorithm, see Lemma 3.2 of [6]. Hence, we may
denote by vm,n the vertex of the quotient complex Γ\B(G) corresponds to

Γdiag(tm, tn, 1)K.

There is an edge between two vertices vm,n and vm′,n′ if and only if the following
hold:

(m′, n′) ∈ {(m± 1, n), (m,n± 1), (m± 1, n± 1)} if m > n > 0,

(m′, n′) ∈ {(m± 1, n), (m,n+ 1), (m+ 1, n+ 1)} if m > n = 0,

(m′, n′) ∈ {(m+ 1, n), (m,n− 1), (m± 1, n± 1)} if m = n > 0,

(m′, n′) ∈ {(1, 0), (1, 1)} if m = n = 0.

We denote by em+m′
2 ,n+n′

2

the type 1 directed edge from vm,n to vm′,n′ . See

Figure 2 for the picture of the quotient complex Γ\G/K.
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· · ·

m

n

v4,2

e 1
2 ,0

Figure 2. Γ\G/K

Meanwhile, for any vertex x = gK ∈ G/K of type i in B, there are q2+q+1
vertices of type i+ 1 neighbors of gK. They are given by{
g

t 0 0
0 1 0
0 0 1

K
}
∪

{
g

1 bt 0
0 t 0
0 0 1

K : b ∈ Fq

}
∪

{t−1 0 c
0 t−1 d
0 0 1

K : c, d ∈ Fq

}
.

Also, there are q2 + q + 1 vertices of type i+ 2 neighbors of gK, which are{
g

t 0 0
0 t 0
0 0 1

K
}
∪

{
g

1 0 0
0 t−1 b
0 0 1

K : b ∈ Fq

}
∪

{t−1 c d
0 1 0
0 0 1

K : c, d ∈ Fq

}
.

See Figure 3 for the star of a vertex in B. A similar discussion with the picture
is presented in Subsection 3.2 of [4] and Section 3 of [7].

Thus, we obtain the local transition probabilities centered at vm,n of type
1 geodesic flow on Γ\G/K in Figure 4. These probabilities depend on the
direction in which they enter toward a fixed vertex. In the case of crossing the
boundary of the quotient complex, it will be considered to be going into the
reflected vertex against the boundary.

In particular, we have the following lemma.

Lemma 3.1. For each positive integer n and a finite segment (e0, . . . , en−1) ∈
(G/I)n of type 1 geodesic in B, there are q2 distinct en ∈ G/I such that
(e0, . . . , en−1, en) ∈ (G/I)n+1 is also a type 1 geodesic segment.

Proof. This is a special case of Lemma 2.1 in [3]. □

The directed graph with weights depicted in Figure 5 provides a description
of the Markov shift (D, σ). In this graph, the (implicitly presented) vertices
correspond to the elements of Γ\G/I, and a directed edge exists from vertex
ek,ℓ to vertex ek′,ℓ′ only if the pair (ek,ℓ, ek′,ℓ′) satisfies t(ek,ℓ) = s(ek,ℓ′). The
weights assigned to the edges represent the number of admissible occurrences,
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q − 1q − 1

(q − 1)2
q − 1

(q − 1)2

q − 1

q − 1

q − 1

Figure 3. Star of a vertex in B

1

q − 1

q2 − q q2 − q

q

0

0

0

q2

in out

Figure 4. Local transition probability

that is, a pair (ek,ℓ, ek′,ℓ′) lifts to a pair (e, e′) of edges in B such that s(e),
s(e′), t(e′) do not form a chamber in B.

Let e 1
2 ,0

be the type 1 directed edge with s(e 1
2 ,0

) = v0,0 and t(e 1
2 ,0

) = v1,0.

We recall that

Dper,n = {d ∈ D : d0 = e 1
2 ,0
, σn(d) = d}

and

gn(o) =
∑

d∈Dper,n

∣∣p−1
3 (d)

∣∣.
Proposition 3.2. For each positive integer n, we have

g3n(o) = q6n−4(q2 − 1)(q2 − q).



TRANSITION PROBABILITY 833

q2 q2 − 1 q2 − q

q q − 1 1

Figure 5. Description of D by directed graph with weights

Proof. We use induction about the distribution of end points in D for type 1
geodesic segments in B of length 3n+ 1. Let

ND,3n(ek,ℓ) =
∑

{d∈D : d0=e 1
2
,0
,d3n=ek,ℓ}

∣∣p−1
3 (d0, d1, . . . , d3n)

∣∣.
Then, for each (k, ℓ) with k + ℓ ∈ 1+3Z

2 , we have

ND,3n(ek,ℓ) =



q6n−3−2k(q2 − 1)(q2 − q) if 1
2 ≤ k ≤ 3n− 5

2 , ℓ = 0,

q6n−3−2k(q2 − 1)(q2 − q) if 5
2 ≤ k ≤ 3n− 5

2 , ℓ = k,
q6n−2−2k(q2 − 1)2 if k + ℓ < 3n− 1, 0 < ℓ < k,
q2ℓ(q2 − 1)2 if k + ℓ = 3n− 1, ℓ∈ 1

2 + Z, ℓ<k,
q2ℓ−1(q2 − 1)(q2 − q) if (k, ℓ) = (3n−1

2 , 3n−1
2 ),

q2ℓ−1(q2 − 1) if k + ℓ = 3n+ 1
2 , ℓ ̸= 0,

1 if (k, ℓ) = (3n+ 1
2 , 0),

0 if k + ℓ > 3n+ 1
2 .

Assume that all the equations ND,3n(ek,ℓ) are correct. Then, it can be readily
checked with Figure 5 that the formulas ND,3n+3(ek,ℓ) are also consistent with
the above expressions. For example, it follows from Figure 5 that

ND,3n+3(e 1
2 ,0

) = q2(q2 − 1)(q2 − q)ND,3n(e 1
2 ,0

) + q4(q2 − q)ND,3n(e 3
2 ,

1
2
)

+ q4(q2 − q)ND,3n(e2, 32 ) + q6ND,3n(e 5
2 ,

5
2
)
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= q6n+2(q2 − 1)(q2 − q).

Since g3n(o) = ND,3n(e 1
2 ,0

), we get the result. □

Corollary 3.3. For each positive integer n, we have

f3n(o) = q3n−1(q2 − 1)(q2 − q)(q2 + q − 1)n−1.

Proof. This follows directly from the identity

f3n(o) = g3n(o)−
n−1∑
k=1

f3k(o)g3n−3k(o)

and induction on n. □

Proposition 3.2 and Corollary 3.3 yields

hTa
= 2 log q and lim sup

n→∞

1

n
log fn(o) =

5

3
log q.

Hence, the inequality in Theorem 1.1 directly follows.

Remark 3.4. The similar directed graph associated to the discrete geodesic
flow on PGL(2,Fq[t])\PGL(2,Fq((t−1)))/PGL(2,Fq[[t−1]]) is presented in [8].
Defining gn(o) and fn(o) similarly, we obtain

g2n(o) = q2n−1(q − 1) and f2n(o) = qn(q − 1).

In particular, f2n(o) is equal to the number of degree n polynomials in Fq[t].
These values are related to the partial quotients of the continued fraction ex-
pansion of quadratic irrationals in Fq((t−1)) (cf. [11]). We believe that it would
be interesting to discover an alternative interpretation of the formula of f3n(o)
in PGL3 through multi-dimensional continued fraction theory.
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