
Bull. Korean Math. Soc. 61 (2024), No. 3, pp. 699–715

https://doi.org/10.4134/BKMS.b230304

pISSN: 1015-8634 / eISSN: 2234-3016

DELTA-SHOCK FOR THE NONHOMOGENEOUS

PRESSURELESS EULER SYSTEM

Shiwei Li and Jianli Zhao

Abstract. We study the Riemann problem for the pressureless Euler

system with the source term depending on the time. By means of the
variable substitution, two kinds of Riemann solutions including delta-

shock and vacuum are constructed. The generalized Rankine-Hugoniot
relation and entropy condition of the delta-shock are clarified. Because

of the source term, the Riemann solutions are non-self-similar. Moreover,

we propose a time-dependent viscous system to show all of the existence,
uniqueness and stability of solutions involving the delta-shock by the

vanishing viscosity method.

1. Introduction

Consider the pressureless Euler system with the source term

(1.1)

{
ρt + (ρu)x = 0,
(ρu)t + (ρu2)x = −s(t)ρu,

where ρ and u denote the density and velocity of the gas, respectively, the
source term −s(t)ρu with s(t) ∈ C([0,+∞); [0,+∞)) may represent the time-
dependent damping.

If s(t) = 0, then the system (1.1) reduces to the pressureless Euler system,
which may be used to model the motion of free particles sticking under collision
[2, 31] and the formation of large-scale structures in the universe [20]. Since
1994, it has been extensively studied. For instance, the existence of measure
solutions to the Riemann problem was proved by Bouchut [1]. Weinan et al.
[31] proved the existence of global weak solution and the behavior of such global
solution with random initial data. Sheng and Zhang [24] solved the Riemann
problems with the use of the characteristic analysis and vanishing viscosity
method. It has been shown that delta-shocks and vacuum states appear in
Riemann solutions. As regards the delta-shocks, they are an important kind of
nonclassical waves for systems of conservation laws. Mathematically, they are
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characterized by the delta functions appearing in the state variables. Physically,
they represent the process of concentration of the mass and formation of the
universe. For interested readers, see [4,7,10–12,14,16,18,19,21–24,27–29,33,34].

When s(t) = α > 0, the system (1.1) becomes the pressureless Euler system
with constant damping. The Riemann solutions include two kinds: delta-shock
solutions and vacuum solutions. But the viscous stability of the non-self-similar
solutions involving delta-shock has not been studied. Moreover, it should be
noted that the damping is usually time-dependent. For example, one very
good example [8, 15, 25] is s(t) = µ/(1 + t), where µ is a positive number to
describe the scale of the damping. However, there are few works on the stability
of Riemann solutions to the system (1.1) with s(t) = µ/(1 + t) by vanishing
viscosity method. Solving both problems is interesting and exciting, but it is
also just one of the objectives of the present paper. To this end, we first discuss
the Riemann problem for the (1.1) with initial data

(1.2) (ρ, u)(x, 0) =

{
(ρ−, u−), x < 0,
(ρ+, u+), x > 0.

By introducing a transformation u(x, t) = v(x, t)e−
∫ t
0
s(r)dr, the (1.1) can

be transformed into a homogeneous system, which is a non-strictly hyperbolic
system. With the help of the characteristic analysis method, we solve the
Riemann problem for the modified system with the same Riemann initial data.
There are two kinds of solutions: the one involving vacuum and the other
including delta-shock. The generalized Rankine-Hugoniot relation and entropy
condition of the delta-shock are clarified. Further, the position, strength and
propagation speed of the delta-shock are given explicitly. By using the change of

state variables (ρ, u)(x, t) = (ρ, ve−
∫ t
0
s(r)dr)(x, t), the solutions to the original

system (1.1) with (1.2) are constructed by contact discontinuities, vacuum or

delta-shock connecting two non-constant states (ρ±, u±e
−

∫ t
0
s(r)dr). Under the

impact of the source term, the Riemann solutions are not self-similar anymore.
The contact discontinuities and delta-shock are monotonic curves whose shapes
depend on s(t).

In order to explore the stability of the non-self-similar solutions to (1.1)-
(1.2), we propose the following time-dependent viscous system

(1.3)

{
ρt + (ρu)x = 0,

(ρu)t + (ρu2)x = εe−
∫ t
0
s(r)dr

( ∫ t

0
e−

∫ y
0

s(r)drdy
)
uxx − s(t)ρu,

where ε is the coefficient of viscosity. The motivation for the viscous system
(1.3) comes from scalar conservation law with time-dependent viscosity

ut + (F (u))x = G(t)uxx, G(t) > 0.

Tupciev [30] and Dafermos [3] independently proposed the systems of hyper-
bolic conservation laws with time-dependent viscosity G(t) = εt such that
the systems possess smooth solutions depending only upon the single vari-
able ξ = x/t. Tan, Zhang and Zheng [29] initially used the method to study
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the delta-shocks for a nonstrictly hyperbolic conservation laws. Subsequently,
many researchers studied the delta-shocks for various systems by adopting the
vanishing viscosity method, see papers [9,13,24,26,32]. For the triangular sys-
tems of conservation laws, De la cruz [5] considered Riemann problem for a
2 × 2 hyperbolic system with linear damping when G(t) is nonlinear. De la
cruz and Juajibioy [6] studied vanishing viscosity limit for Riemann solutions
to a 2× 2 hyperbolic system with linear damping.

Obviously, we have e−
∫ t
0
s(r)dr

( ∫ t

0
e−

∫ y
0

s(r)drdy
)
= t when s(r) = 0. By

making use of the transformation u(x, t) = v(x, t)e−
∫ t
0
s(r)dr, the (1.3) becomes

(1.4)

{
ρt + (ρve−

∫ t
0
s(r)dr)x = 0,

(ρv)t + (ρv2e−
∫ t
0
s(r)dr)x = εe−

∫ t
0
s(r)dr

( ∫ t

0
e−

∫ y
0

s(r)drdy
)
vxx.

It is not hard to observe that if (ρε, vε) solves the problem (1.4) and (2.2), then

(ρε, uε) given by (ρε, uε) = (ρε, vεe−
∫ t
0
s(r)dr) solves the problem (1.3) and

(1.2). Though the Riemann solutions to (1.1)-(1.2) are non-self-similar, the
solutions of (2.1)-(2.2) still remain similar structure if the initial data belong
to a bounded total variation space, except that the weight of the delta-shock
is a function determined by s(t). It is natural to hope that these solutions
are the limits of corresponding similar solutions of viscous system as ε → 0+.
Inspired by [5,6,17], we introduce the similarity variable ξ = x∫ t

0
e−

∫y
0 s(r)drdy

to

obtain a two-point boundary value problem of high-order ordinary differential
equations with the boundary value in the infinity. Adopting the method in
[24], we can show that, the boundary value problem (4.1)-(4.2) has a weak
solution (ρ, v) ∈ L1(−∞,+∞) × C2(−∞,+∞). Further, it is proved that
when u− > u+, the similarity solution of the system (1.4) with (2.2) converges
weakly star to the delta-shock solution of the modified homogeneous system
(2.1) with (2.2) as ε → 0+. As a consequence, the delta-shock solution of (2.1)-
(2.2) is stable under viscous perturbation. The previous analysis, plus the fact
that ε is independent of t, show that the delta-shock solution of the system
(1.1) with (1.2) is also stable under viscous perturbation.

The remaining part of this paper is organized as follows. Section 2 inves-
tigates the Riemann problem for a modified homogeneous system. Section 3
constructs the Riemann solutions of (1.1)-(1.2). Section 4 proves the existence
of solutions to the modified viscous system (1.4) with (2.2), and analyzes the
limiting behavior of solutions as viscosity term vanishes, that is, ε → 0+.

2. Riemann solutions of a modified homogeneous system

In this section we construct the solutions of Riemann problem associated
with a modified homogeneous system (2.1). Under the transformation u(x, t) =

v(x, t)e−
∫ t
0
s(r)dr = v(x, t)eM(t), the system (1.1) is transformed into

(2.1)

{
ρt + (ρveM(t))x = 0,
(ρv)t + (ρv2eM(t))x = 0,
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and the initial data (1.2) changes to

(2.2) (ρ, v)(x, 0) =

{
(ρ−, u−), x < 0,
(ρ+, u+), x > 0.

The (2.1) has a double characteristic root λ = veM(t). The right characteristic
vector is −→r = (1, 0)T satisfying ∇λ·−→r = 0. As a result, the (2.1) is non-strictly
hyperbolic and λ is linearly degenerate.

A bounded discontinuity at x = x(t) satisfies the Rankine-Hugoniot relation

(2.3)

{
−x′(t)[ρ] + [ρveM(t)] = 0,
−x′(t)[ρv] + [ρv2eM(t)] = 0,

where [ρ] = ρl − ρr with ρl = ρ(x(t) − 0, t), ρr = ρ(x(t) + 0, t), in which [ρ]
denotes the jump of ρ across the discontinuity. Eliminating x′(t) in (2.3), we
get

(2.4) (ρlvl−ρrvr)(ρlvle
M(t)−ρrvre

M(t))=(ρl − ρr)(ρlv
2
l e

M(t)−ρrv
2
re

M(t)),

which yields

(2.5) ρlρr(vl − vr)
2 = 0.

Obviously, when vl = vr, the two states (ρl, vl) and (ρr, vr) are connected only
by a contact discontinuity J with the propagation speed

(2.6) x′(t) = vle
M(t) = vre

M(t).

Let us now construct the Riemann solutions in two cases. For the case
u− < u+, we obtain the Riemann solution which consists of two contact dis-
continuities J1 and J2 and a vacuum state (denoted by Vac). The solution can
be represented as

(2.7) (ρ, v)(x, t) =

 (ρ−, u−), x < x1(t),
Vac, x1(t) < x < x2(t),
(ρ+, u+), x > x2(t),

in which the locations of the J1 and J2 are

(2.8) x1(t) = u−

∫ t

0

eM(s)ds, x2(t) = u+

∫ t

0

eM(s)ds

and the propagation speeds of J1 and J2 are x′
1(t) = u−e

M(t) and x′
2(t) =

u+e
M(t), respectively.

When u− > u+, the solution can not be constructed by the contact dis-
continuities. Because the characteristic lines from the initial data overlap in

Ω = {(x, t) |u+

∫ t

0
eM(s)ds ≤ x(t) ≤ u−

∫ t

0
eM(s)ds}, the singularity of solutions

must develop in this domain. Therefore there is no solution in bounded varia-
tion space. Now we set out to show that even when the initial data is smooth,
ρ and vx must blow up simultaneously at a finite time.
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Consider (2.1) with smooth initial value (ρ(x, 0), v(x, 0)) = (ρ0(x), v0(x))
satisfying v′0(x) < 0. The characteristic equations of system (2.1) are found to
be

(2.9)
dx

dt
= veM(t),

dv

dt
= 0,

dρ

dt
= −ρvxe

M(t).

So the characteristic curve passing through any given point (0, a) on the x-axis
is expressed as

(2.10) x = a+ v0(a)

∫ t

0

eM(s)ds

on which v takes the constant value v0(a). Combining (2.1) with (2.9)-(2.10),
we arrive at

(2.11) vx =
v′0(a)

1 + (
∫ t

0
eM(s)ds)v′0(a)

, ρ =
ρ0(a)

1 + (
∫ t

0
eM(s)ds)v′0(a)

.

In virtue of v′0(a) < 0, it follows from (2.11) that

(2.12) lim
t→t∗

(ρ, vx) = (∞,∞),

where t∗ is uniquely determined by
∫ t∗

0
eM(s)ds = − 1

v′
0(a)

(let v′0(a) be suffi-

ciently small if necessary). The formula (2.12) shows that ρ and vx must blow
up simultaneously at a finite time.

In such circumstances, motivated by [24, 32], we will seek the solution con-
taining delta-shock. To this end, the following definitions of two-dimensional
weighted delta function and delta-shock solution are introduced.

Definition 2.1. A two-dimensional weighted delta function ω(s)δS supported
on a smooth curve S = {(x(s), t(s)) : c ≤ s ≤ d} is defined by

(2.13)
〈
ω(s)δS , ϕ(x, t)

〉
=

∫ d

c

ω(s)ϕ(x(s), t(s))ds

for all test functions ϕ ∈ C∞
0 (R× R+).

Definition 2.2. A pair (ρ, v) is called a delta-shock type solution to the system
(2.1) in the sense of distributions if there exist a smooth curve S = {(x(t), t) :
0 ≤ t ≤ ∞} and a weight ω ∈ C1(S) such that ρ and v are represented in the
following form

(2.14) ρ(x, t) = ρ0(x, t) + ω(t)δS , v(x, t) = v0(x, t), v(x, t)|S = vδ(t),

where ρ0(x, t) = ρl(x, t) − [ρ]H(x − x(t)), v0(x, t) = vl(x, t) − [v]H(x − x(t)),
in which (ρl, vl)(x, t) and (ρr, vr)(x, t) are piecewise smooth solutions to the
system (2.1), H(x) is the Heaviside function whose value is zero for negative
argument and one for positive argument, and it satisfies

(2.15) ⟨ρ, ϕt⟩+ ⟨ρveM(t), ϕx⟩ = 0, ⟨ρv, ϕt⟩+ ⟨ρv2eM(t), ϕx⟩ = 0
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for all test functions ϕ ∈ C∞
0 (R× R+), in which

⟨ρ, ϕ⟩ =
∫ +∞

0

∫ +∞

−∞
ρ0ϕdxdt+ ⟨ω(t)δS , ϕ⟩,

⟨ρv, ϕ⟩ =
∫ +∞

0

∫ +∞

−∞
ρ0v0ϕdxdt+ ⟨ω(t)vδ(t)δS , ϕ⟩.

Based on these definitions, the delta-shock solution to the system (2.1) can
be written in the following form

(2.16) (ρ, v)(x, t) =

 (ρl, vl)(x, t), x < x(t),
(ω(t)δ(x− x(t)), vδ(t)), x = x(t),
(ρr, vr)(x, t), x > x(t),

where δ(·) is the standard Dirac measure.

Theorem 2.3. A pair (ρ, v) of the form (2.16) is a solution to the system (2.1)
in the sense of distributions if the generalized Rankine-Hugoniot relation

(2.17)


dx(t)
dt = σ(t) = vδ(t)e

M(t),
dω(t)
dt = −[ρ]σ(t) + [ρveM(t)],

d(ω(t)vδ(t))
dt = −[ρv]σ(t) + [ρv2eM(t)]

holds.

Proof. For an arbitrary test function ϕ ∈ C∞
0 (R × R+), with the use of the

Green’s formula and integration by parts, we calculate

⟨ρv, ϕt⟩+ ⟨ρv2eM(t), ϕx⟩(2.18)

=

∫ +∞

0

∫ x(t)

−∞
(ρlvlϕt + ρlv

2
l e

M(t)ϕx)dxdt

+

∫ +∞

0

∫ +∞

x(t)

(ρrvrϕt + ρrv
2
re

M(t)ϕx)dxdt

+

∫ +∞

0

ω(t)vδ(t)(ϕt + vδ(t)e
M(t)ϕx)dt

=

∫ +∞

0

∫ x(t)

−∞
{(ρlvlϕ)t + (ρlv

2
l e

M(t)ϕ)x}dxdt

+

∫ +∞

0

∫ +∞

x(t)

{(ρrvrϕ)t + (ρrv
2
re

M(t)ϕ)x}dxdt+
∫ +∞

0

ω(t)vδ(t)
dϕ

dt
dt

=

∮
{−ρlvlϕdx+ ρlv

2
l e

M(t)ϕ}dt+
∮

{−ρrvrϕdx+ ρrv
2
re

M(t)ϕ}dt

−
∫ +∞

0

d(ω(t)vδ(t))

dt
ϕdt
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=

∫ +∞

0

(
− ρlvl

dx

dt
+ ρlv

2
l e

M(t) + ρrvr
dx

dt
− ρrv

2
re

M(t)
)
ϕdt

−
∫ +∞

0

d(ω(t)vδ(t))

dt
ϕdt

=

∫ +∞

0

{
− [ρv]σ(t) + [ρv2eM(t)]− d(ω(t)vδ(t))

dt

}
ϕdt.

A completely similar argument leads to

(2.19) ⟨ρ, ϕt⟩+ ⟨ρveM(t), ϕx⟩ =
∫ +∞

0

{
− [ρ]σ(t) + [ρveM(t)]− dω(t)

dt

}
ϕdt.

This completes the proof. □

The generalized Rankine-Hugoniot relation (2.17) reflects the exact relation-
ship among the location, weight and propagation speed of the discontinuity.
And so beyond that, in order that such a discontinuity is unique, we supple-
ment the entropy condition

(2.20) λ(ρr, vr) <
dx(t)

dt
< λ(ρl, vl).

The equation (2.20) means that all characteristics on both sides of the discon-
tinuity are incoming. A discontinuity is known as a delta-shock (symbolized
by δ) of the system (2.1) if it satisfies generalized Rankine-Hugoniot relation
(2.17) and entropy condition (2.20).

In what follows, we continue to solve the Riemann problem (2.1) and (2.2)
for the case u− > u+. At this moment, the Riemann solution is a delta-shock
of the form, besides two constant states,

(2.21) (ρ, v)(x, t) =

 (ρ−, u−), x < x(t),
(ω(t)δ(x− x(t)), vδ(t)), x = x(t),
(ρ+, u+), x > x(t).

The generalized Rankine-Hugoniot relation (2.17) with

(2.22) t = 0 : x(0) = 0, ω(0) = 0,

and the entropy condition

(2.23) u+ < vδ(t) < u−

enable us to determine x(t), ω(t) and vδ(t) uniquely. Integrating (2.17) we
obtain

(2.24)

{
ω(t) = −(ρ− − ρ+)x(t) + (ρ−u− − ρ+u+)

∫ t

0
eM(s)ds,

ω(t)vδ(t) = −(ρ−u− − ρ+u+)x(t) + (ρ−u
2
− − ρ+u

2
+)

∫ t

0
eM(s)ds,
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which gives

(ρ− − ρ+)vδ(t)x(t)− (ρ−u− − ρ+u+)
(
vδ(t)

∫ t

0

eM(s)ds+ x(t)
)

+
(
ρ−u

2
− − ρ+u

2
+

)∫ t

0

eM(s)ds = 0.
(2.25)

The equation (2.25) can be rewritten as

d

dt

(1
2
(ρ− − ρ+)x

2(t)− (ρ−u− − ρ+u+)x(t)
∫ t

0

eM(s)ds

+
1

2

(
ρ−u

2
− − ρ+u

2
+

)(∫ t

0

eM(s)ds
)2)

= 0,

which means that
1

2
(ρ− − ρ+)x

2(t)− (ρ−u− − ρ+u+)x(t)
∫ t

0

eM(s)ds

+
1

2

(
ρ−u

2
− − ρ+u

2
+

)(∫ t

0

eM(s)ds
)2

= 0.

(2.26)

When ρ− ̸= ρ+, solving the equation (2.26) gives

(2.27) x(t) =
(ρ−u− − ρ+u+)±

√
ρ−ρ+(u− − u+)2

ρ− − ρ+

∫ t

0

eM(s)ds.

Integrating the first equation in (2.17) yields x(t) =
∫ t

0
vδ(s)e

M(s)ds. And so
vδ(t) is a constant in virtue of (2.27). Then there is a lengthly but straightfor-
ward computation to show that

(2.28)

vδ =

√
ρ−u− +

√
ρ+u+√

ρ− +
√
ρ+

,

ω(t) =
√
ρ−ρ+(u− − u+)

∫ t

0

eM(s)ds,

x(t) = vδ

∫ t

0

eM(s)ds.

If ρ− = ρ+, it follows from (2.24) and (2.26) that

(2.29) vδ=
u−+u+

2
, ω(t)=ρ−(u−−u+)

∫ t

0

eM(s)ds, x(t)=vδ

∫ t

0

eM(s)ds.

The result can now be summarised as follows:

Theorem 2.4. When u− > u+, the Riemann problem (2.1) and (2.2) admits
a unique entropy solution in the sense of distributions, which can be written in
the form

(2.30) (ρ, v)(x, t) =


(ρ−, u−), x < vδ

∫ t

0
eM(s)ds,(

ω(t)δ
(
x− vδ

∫ t

0
eM(s)ds

)
, vδ

)
, x = vδ

∫ t

0
eM(s)ds,

(ρ+, u+), x > vδ
∫ t

0
eM(s)ds,

where vδ and ω(t) are shown in (2.28).
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3. Construction of Riemann solutions to (1.1)-(1.2)

According to the transformation of state variables

(ρ, u)(x, t) = (ρ, veM(t))(x, t),

we will, in this section, construct the Riemann solutions of the original system
(1.1) with (1.2).

If u− < u+, the Riemann solutions of (1.1)-(1.2) can be written as

(3.1) (ρ, u)(x, t) =

 (ρ−, u−e
M(t)), x < x1(t),

Vac, x1(t) < x < x2(t),
(ρ+, u+e

M(t)), x > x2(t),

where x1(t) and x2(t) are given by (2.8).
On differentiation x1(t) and x2(t) with respect to t, we have

x′
1(t)=u−e

M(t), x′′
1(t)=−u−e

M(t)s(t), x′
2(t)=u+e

M(t), x′′
2(t)=−u+e

M(t)s(t),

which means that the xi(t) (i = 1, 2) must be monotonic. Since the sign of s(t)
is assumed to be unchanging, the curves are concave or convex.

Definition 3.1. A pair (ρ, u) is called a delta-shock solution to the system
(1.1) in the sense of distributions if there exist a smooth curve S = {(x(t), t) :
0 ≤ t ≤ ∞} and a weight ω ∈ C1(S) such that ρ and u are represented in the
following form

(3.2) ρ(x, t) = ρ0(x, t) + ω(t)δS , u(x, t) = u0(x, t), u(x, t)|S = uδ(t),

where ρ0(x, t) = ρl(x, t) − [ρ]H(x − x(t)), u0(x, t) = ul(x, t) − [u]H(x − x(t)),
in which (ρl, ul)(x, t) and (ρr, ur)(x, t) are piecewise smooth solutions to the
system (1.1), and it satisfies

(3.3) ⟨ρ, ϕt⟩+ ⟨ρu, ϕx⟩ = 0, ⟨ρu, ϕt⟩+ ⟨ρu2, ϕx⟩ = ⟨s(t)ρu, ϕ⟩

for all test functions ϕ ∈ C∞
0 (R×R+), where

⟨ρ, ϕ⟩ =
∫ +∞

0

∫ +∞

−∞
ρ0ϕdxdt+ ⟨ω(t)δS , ϕ⟩,

⟨ρu, ϕ⟩ =
∫ +∞

0

∫ +∞

−∞
ρ0u0ϕdxdt+ ⟨ω(t)uδ(t)δS , ϕ⟩.

According to the above definition, if u− > u+, we construct the delta-shock
solution of (1.1) and (1.2) in the form

(3.4) (ρ, u)(x, t) =

 (ρ−, u−e
M(t)), x < x(t),

(ω(t)δ(x− x(t)), uδ(t)), x = x(t),
(ρ+, u+e

M(t)), x > x(t),
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which should satisfy the following generalized Rankine-Hugoniot relation

(3.5)


dx(t)
dt = uδ(t),

dω(t)
dt = −[ρ]uδ(t) + [ρu],

d(ω(t)uδ(t))
dt = −[ρu]uδ(t) + [ρu2]− s(t)ω(t)uδ(t),

where uδ(t)e
−M(t) is a constant, the jumps across the discontinuity are

(3.6) [ρu] = ρ−u−e
M(t)−ρ+u+e

M(t), [ρu2] = ρ−(u−e
M(t))2−ρ+(u+e

M(t))2.

In addition, the over-compressive entropy condition for the delta-shock

(3.7) u+e
M(t) < uδ(t) < u−e

M(t)

should be imposed in order to ensure the uniqueness.

Theorem 3.2. When u− > u+, the Riemann problem (1.1)-(1.2) has a delta-
shock solution which can be expressed as the formula (3.4), where

(3.8) uδ(t)=vδe
M(t), ω(t)=

√
ρ−ρ+(u−−u+)

∫ t

0

eM(s)ds, x(t)=vδ

∫ t

0

eM(s)ds,

in which vδ is shown in (2.28).

Proof. The second equation in (3.5) gives

(3.9)
dω(t)

dt
= −uδ(t)(ρ− − ρ+) + (ρ−u−e

M(t) − ρ+u+e
M(t)).

Remember that uδ(t)e
−M(t) is a constant, the third equality of (3.5) can be

reduced to

(3.10)

dω(t)

dt
uδ(t) = − uδ(t)(ρ−u−e

M(t) − ρ+u+e
M(t))

+ (ρ−(u−e
M(t))2 − ρ+(u+e

M(t))2).

Together the equation (3.9) with the equation (3.10) we have
(3.11)

(ρ−−ρ+)(uδ(t)e
−M(t))2−2(ρ−u−−ρ+u+)(uδ(t)e

−M(t))+(ρ−u
2
−−ρ+u

2
+) = 0.

Therefore, uδ(t) = vδe
M(t) can be obtained by virtue of the entropy condition

(3.7). Then it follows from (3.5) that (3.8). This completes the proof. □

4. Stability of solutions to the systems (1.1) and (2.1)

This section establishes the stability of Riemann solutions to the systems
(1.1) and (2.1). First, we show the existence of solutions to the modified viscous
system (1.4) with (2.2). Then we analyse the limiting behavior of the solutions
as ε → 0+. Because the delta-shock is what we are interested in, we mainly
discuss the case u− > u+. A similar analysis can be done for the case u− < u+.
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We look for the solutions which depend on the variable ξ = x∫ t
0
e−

∫y
0 s(r)drdy

.

Then the (1.4) and initial data (2.2) become

(4.1)

{
−ξρξ + (ρv)ξ = 0,
−ξ(ρv)ξ + (ρv2)ξ = εvξξ

and

(4.2) (ρ, v)(±∞) = (ρ±, u±).

By the same arguments as used in [24], we can arrive at the following theo-
rem.

Theorem 4.1. There exists a weak solution (ρ, v)∈L1(−∞,+∞)×C2(−∞,+∞)

for the boundary value problem (4.1) with (4.2).

In what follows, we analyze the limiting behavior of the solutions depending
on the variable ξ = x∫ t

0
e−

∫y
0 s(r)drdy

of (1.4) with (2.2) as ε → 0+.

Lemma 4.2. Assume that u− > u+ and (ρε(ξ), vε(ξ)) is a solution of (4.1)
and (4.2) for fixed ε. Let ξεσ be the unique point satisfying ξεσ = vε(ξεσ), ξσ =
limε→0+ ξεσ (pass to a subsequence if necessary). Then for each η > 0,

lim
ε→0+

vεξ(ξ) = 0 for |ξ − ξσ| ≥ η,

lim
ε→0+

vε(ξ) =

{
u− for ξ ≤ ξσ − η,
u+ for ξ ≥ ξσ + η

uniformly in the above intervals.

Proof. Take ξ3 = ξσ − η/2, and let ε be small such that ξεσ > ξ3 + η/4. When
ξ < ξ3, we have

ρε(ξ) = ρ−exp
(∫ ξ

−∞

−(vε(s))′

vε(s)− s
ds
)
≤ ρ−

u− − ξ

vε(ξ)− ξ
,

which gives ρε(ξ)(vε(ξ)− ξ) ≤ ρ−(u− − ξ). Integrating the second equation of
(4.1) twice on [ξ, ξ3] yields

vε(ξ3)− vε(ξ) ≤ (vε(ξ3))
′
∫ 0

ξ−ξ3

exp
ρ−
ε

(
(u− − ξ3)r −

1

2
r2
)
dr.

From this it follows that in the limit ξ → −∞,

u− − u+ ≥ −(vε(ξ3))
′
∫ 0

−∞
exp

ρ−
2ε

(
2(u− − ξ3)r − r2

)
dr

≥ −(vε(ξ3))
′
∫ 0

−∞
exp

ρ−
2ε

(
2
(
u− − ξ3

)
r − r2

)
dr

≥ −(vε(ξ3))
′εM1,
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where M1 is a positive constant independent of ε. Consequently, we have

|(vε(ξ3))′| ≤
u− − u+

εM1

and

|(vε(ξ))′| ≤ u− − u+

εM1
exp

(∫ ξ3

ξ

−ρε(vε − s)

ε
ds
)
.

When ξ < ξ3, one has

ρε(ξ) = ρ−exp
(∫ ξ

−∞

−(vε(s))′

vε(s)− s
ds
)
≥ ρ−

vε(ξ3)− ξ

vε(ξ)− ξ
,

which leads to

ρε(ξ)(vε(ξ)− ξ) ≥ ρ−(v
ε(ξ3)− ξ) for ξ < ξ3.

Hence, we arrive at

|(vε(ξ))′| ≤ u− − u+

εM1
exp

(
− ρ−

ε

∫ ξ3

ξ

(vε(ξ3)− s)ds
)
,

which shows that

lim
ε→0+

vεξ(ξ) = 0 uniformly for ξ ≤ ξσ − η.

For ξ < ξ4 ≤ ξσ − η, noticing that

ρε(ξ)(vε(ξ)− ξ) ≥ ρ−(v
ε(ξ4)− ξ)

> ρ−(ξ
ε
σ − ξ4) → ρ−(ξσ − ξ4) > 0 as ε → 0+,

we have

|vε(ξ4)− vε(ξ)| = |(vε(ξ4))′|
∫ ξ4

ξ

exp
(∫ ξ4

r

−ρε(vε − s)

ε
ds
)
dr

≤ |(vε(ξ4))′|
∫ ξ4

ξ

exp
(−M2(ξ4 − r)

ε

)
dr

≤ ε

M2
|(vε(ξ4))′|

(
1− exp

(−M2(ξ4 − ξ)

ε

))
,

where M2 = ρ−(ξσ−ξ4)
2 . Let ξ approach negative infinity, one obtains

|vε(ξ4)− u−| ≤
ε

M2
|(vε(ξ4))′|.

Thus we have

lim
ε→0+

vε(ξ) = u− uniformly for ξ ≤ ξσ − η.

The similar proof works for ξ ≥ ξσ + η. The proof is completed. □
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Lemma 4.3. For any η > 0,

lim
ε→0+

ρε(ξ) =

{
ρ− for ξ < ξσ − η,
ρ+ for ξ > ξσ + η

uniformly.

Proof. For ξ < ξ5 < ξσ − η, we have

ρ−
vε(ξ5)− ξ

vε(ξ)− ξ
≤ ρε(ξ) ≤ ρ−

u− − ξ

vε(ξ)− ξ
.

By taking use of Lemma 4.2, we have limε→0+ ρε(ξ) = ρ− for ξ < ξσ − η.
Similarly, the conclusion for ξ > ξσ + η can be obtained. The proof is finished.

□

Next we investigate the limiting behavior of ρε in the neighborhood of ξ = σ
as ε → 0+. Setting

(4.3) σ = ξσ = lim
ε→0+

ξεσ = lim
ε→0+

vε(ξεσ) = v(σ) = vδ,

we arrive at

(4.4) u+ < σ < u−.

We choose φ ∈ C∞
0 [ξ1, ξ2] with ξ1 < σ < ξ2 satisfying φ(ξ) ≡ φ(σ) for ξ in a

neighborhood Ω of ξ = σ. When ξεσ ∈ Ω ⊂ (ξ1, ξ2), it follows from (4.1) that

(4.5) −
∫ ξ2

ξ1

ρε(vε − ξ)φ′dξ +

∫ ξ2

ξ1

ρεφdξ = 0

and

(4.6) −
∫ ξ2

ξ1

ρεvε(vε − ξ)φ′dξ +

∫ ξ2

ξ1

ρεvεφdξ = ε

∫ ξ2

ξ1

vεφ′′dξ.

For α1, α2 ∈ Ω such that α1 < σ < α2, in view of Lemmas 4.2-4.3, we calculate

lim
ε→0+

∫ ξ2

ξ1

ρεvε(vε − ξ)φ′dξ

=

∫ α1

ξ1

ρ−u−(u− − ξ)φ′dξ +

∫ ξ2

α2

ρ+u+(u+ − ξ)φ′dξ

= (ρ−u
2
− − ρ+u

2
+ − ρ−u−α1 + ρ+u+α2)φ(σ)

+

∫ α1

ξ1

ρ−u−φ(ξ)dξ +

∫ ξ2

α2

ρ+u+φ(ξ)dξ.

From this it follows that in the limit α1 → σ− and α2 → σ+,

lim
ε→0+

∫ ξ2

ξ1

ρεvε(vε − ξ)φ′dξ = (−σ[ρv] + [ρv2])φ(σ) +

∫ ξ2

ξ1

H0(ξ − σ)φ(ξ)dξ,
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where [ρv] = ρ−u− − ρ+u+, [ρv
2] = ρ−u

2
− − ρ+u

2
+, H0(x) is a step function:

H0(x) = ρ−u− for x < 0 and H0(x) = ρ+u+ for x > 0. Combining with (4.6),
we get

(4.7) lim
ε→0+

∫ ξ2

ξ1

(ρεvε −H0(ξ − σ))φ(ξ)dξ = (−σ[ρv] + [ρv2])φ(σ)

for all sloping test functions φ ∈ C∞
0 [ξ1, ξ2]. By the approximation process, we

obtain that (4.7) holds for all φ ∈ C∞
0 [ξ1, ξ2]. In consequence, ρεvε converges

to a sum of a step function H0(ξ−σ) and a weighted Dirac delta function with
the strength (−σ[ρv] + [ρv2]) in the weak star topology of C∞

0 (R).
In a similar way, it follows from (4.5) that

(4.8) lim
ε→0+

∫ ξ2

ξ1

(ρε −Hρ(ξ − σ))φ(ξ)dξ = (−σ[ρ] + [ρv])φ(σ)

for all φ ∈ C∞
0 [ξ1, ξ2], whereHρ(x) is a step function: Hρ(x) = ρ− for x < 0 and

Hρ(x) = ρ+ for x > 0. Consequently, ρε converges to a sum of a step function
Hρ(ξ−σ) and a weighted Dirac delta function with the weight ω0 = −σ[ρ]+[ρv]
in the weak star topology of C∞

0 (R).
In addition, if one takes the test function as φ/(v̄ε+ν) in (4.6), where v̄ε is a

modified function satisfying vε(σ) inside Ω and vε outside Ω, and lets ν → 0+,
then the following formula

(4.9) lim
ε→0+

∫ ξ2

ξ1

(ρε −Hρ(ξ − σ))φ(ξ)dξ · σ = (−σ[ρv] + [ρv2])φ(σ)

can be obtained. Combining (4.8) with (4.9), one has

(4.10) σ2[ρ]− 2σ[ρv] + [ρv2] = 0.

On solving equation (4.10) for σ, we have σ = vδ =
√
ρ−u−+

√
ρ+u+√

ρ−+
√
ρ+

satisfying

the formula (4.4). Put σ into ω0 = −σ[ρ] + [ρv] to get ω0 =
√
ρ−ρ+(u− − u+).

Hence, we come to a conclusion.

Theorem 4.4. When u− > u+, let (ρε, vε)(x, t) be the solution depending
on the variable ξ = x∫ t

0
e−

∫y
0 s(r)drdy

of (1.4), (2.2). Then the limit functions

ρ(x, t) and v(x, t) of ρε(x, t) and vε(x, t) exist in the sense of distributions,
and (ρ, v)(x, t) solves (2.1) with (2.2). The solution (ρ, v)(x, t) can be explicitly
shown as
(4.11)

(ρ, v)(x, t)=


(ρ−, u−), x < vδ

∫ t

0
eM(s)ds,(

ω0

∫ t

0
eM(s)ds · δ

(
x− vδ

∫ t

0
eM(s)ds

)
, vδ

)
, x = vδ

∫ t

0
eM(s)ds,

(ρ+, u+), x > vδ
∫ t

0
eM(s)ds,

in which

(4.12) vδ =

√
ρ−u− +

√
ρ+u+√

ρ− +
√
ρ+

, ω0 =
√
ρ−ρ+(u− − u+).
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It should be noted that the difference between the strength ω0 and weight
ω(t) in (2.28) is due to the result of the introduction of the similarity variable.

Theorem 4.4 shows that the delta-shock solution of (2.1) and (2.2) is sta-
ble under viscous perturbation. Moreover, it is not difficult to see that, if
(ρε, vε)(x, t) solves the problem (1.4) and (2.2), then (ρε, uε)(x, t) given by
(ρε, uε)(x, t) = (ρε, vεeM(t))(x, t) solves the problem (1.3) and (1.2). Note
that ε is independent of t, then the limit, limε→0+(ρ

ε, uε)(x, t) = (ρ, u)(x, t) =
(ρ, veM(t))(x, t) exists in the sense of distributions, and (ρ, u)(x, t) solves (1.1)
with (1.2). The (ρ, u)(x, t) can be given explicitly as

(ρ, u)(x, t)

=


(ρ−, u−e

M(t)), x < vδ
∫ t

0
eM(s)ds,(

ω0

∫ t

0
eM(s)ds · δ

(
x− vδ

∫ t

0
eM(s)ds

)
, vδe

M(t)
)
, x = vδ

∫ t

0
eM(s)ds,

(ρ+, u+e
M(t)), x > vδ

∫ t

0
eM(s)ds

for u− > u+. Therefore the delta-shock solution to the system (1.1) with initial
data (1.2) is also stable under viscous perturbation.
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