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THE UNIMODALITY OF THE r3-CRANK OF

3-REGULAR OVERPARTITIONS
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Abstract. An l-regular overpartition of n is an overpartition of n with

no parts divisible by l. Recently, the authors introduced a partition statis-
tic called rl-crank of l-regular overpartitions. Let Mrl (m,n) denote the

number of l-regular overpartitions of n with rl-crank m. In this paper, we
investigate the monotonicity property and the unimodality of Mr3 (m,n).

We prove that Mr3 (m,n) ≥ Mr3 (m,n− 1) for any integers m and n ≥ 6

and the sequence {Mr3 (m,n)}|m|≤n is unimodal for all n ≥ 14.

1. Introduction

A partition λ of a positive integer n is a weakly-decreasing sequence of pos-

itive integers λ1 ≥ λ2 ≥ · · · ≥ λl such that |λ| =
∑l

i=1 λi = n. Let p(n) denote
the number of partitions of n. The partition statistic crank introduced by An-
drews and Garvan [2] can be used to provide combinatorial interpretations for
Ramanujan’s famous congruences [7] as given by

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11).

Recall that the crank [2] of λ is defined as

crank(λ) =

{
λ1, if n1(λ) = 0,
µ(λ)− n1(λ), if n1(λ) > 0,

where n1(λ) is the number of ones in λ and µ(λ) is the number of parts larger
than n1(λ). Let M(m,n) denote the number of partitions of n with crank m.
Andrews and Garvan [2] gave the following generating function of M(m,n)

(1.1)

∞∑
m=−∞

∞∑
n=0

M(m,n)zmqn =
(q; q)∞

(zq; q)∞(z−1q; q)∞
.

Received May 6, 2023; Revised September 1, 2023; Accepted October 5, 2023.

2020 Mathematics Subject Classification. Primary 05A17, 11P83, 05A20.

Key words and phrases. Regular overpartition, rl-crank, monotonicity, unimodality.
This work was financially supported by NSFC 12101307 and 11801139 and the Qing Lan

Project of JiangSu Province.

©2024 Korean Mathematical Society
621



622 R. HAO AND E. SHEN

Here and throughout the rest of this paper, we adopt the common q-series
notation

(a; q)∞ =

∞∏
n=1

(1− aqn−1),

and

(a; q)n =
(a; q)∞

(aqn; q)∞
.

Recently, Ji and Zang [5] discovered the following monotonicity property and
unimodality of M(m,n).

Theorem 1.1 ([5, Theorem 1.6]). For n ≥ 14 and 0 ≤ m ≤ n− 2,

M(m,n) ≥ M(m,n− 1).

Theorem 1.2 ([5, Theorem 1.7]). For n ≥ 44 and 1 ≤ m ≤ n− 1,

M(m− 1, n) ≥ M(m,n).

Recall that an overpartition [3] is a partition in which the first occurrence of
each number may be overlined. For instance, (9, 6, 6, 1, 1, 1) is an overpartition
of 24. In 2003, Lovejoy [6] considered a special kind of overpartitions which is
enumerated by Al(n) with the restriction that no parts of the overpartition can
be divisible by l. Later, the second author [8] called the overpartitions counted
by Al(n) as l-regular overpartitions and gave the generating function of Al(n)
as given by

∞∑
n=0

Al(n)q
n =

(−q; q)∞(ql; ql)∞
(q; q)∞(−ql; ql)∞

=
f2f

2
l

f2
1 f2l

,(1.2)

where fk is defined by

fk = (qk; qk)∞

with any positive integer k. Andrews [1] introduced (k, i)-singular overpar-
titions and proved that they are counted by the partition function Ck,i(n)
which denotes the number of k-regular overpartitions of n and only parts ≡ ±i
(mod k) may be overlined. Andrews established the generating function of
Ck,i(n) as

(1.3)

∞∑
n=0

Ck,i(n)q
n =

(qk; qk)∞(−qi; qk)∞(−qk−i; qk)∞
(q; q)∞

, k ≥ 3, 1 ≤ i ≤ ⌊k
2
⌋,

and showed that

C3,1(9n+ 3) ≡ C3,1(9n+ 6) ≡ 0 (mod 3).(1.4)

By (1.2) and (1.3), we have A3(n) = C3,1(n). In light of the fact, the
authors [4] introduced the rl-crank of l-regular overpartitions based on the
following theorem.



THE UNIMODALITY OF THE r3-CRANK OF 3-REGULAR OVERPARTITIONS 623

Theorem 1.3 ([4, Theorem 2.1]). For integers k1 ≥ −1, k2 ≥ 1 and l ≥
3, there is a bijection ∆ between the set of l-regular overpartitions of n and
the set of vector partitions (α, β, γ) with |α| + |β| + |γ| equal to n. Here α
is an ordinary partition, β is a partition like (k1l + 1, . . . , 2l + 1, l + 1, 1) or
(k2l − 1, . . . , 3l − 1, 2l − 1, l − 1) and γ is a distinct partition with all parts
̸≡ 0,±1 (mod l).

The authors gave the definition of the rl-crank of an l-regular overpartition
under the bijection ∆.

Definition 1.4 ([4, Definition 2.2]). Let λ be an l-regular overpartition of n
with l ≥ 3 and let ∆(λ) = (α, β, γ). The rl-crank of λ, denoted crl(λ), is
defined by

crl(λ) = crank(α),

where crank(α) is the crank of partition α.

In [4], the authors gave combinatorial interpretations for some congruences
of Al(n) including (1.4). Let Mrl(m,n) denote the number of l-regular over-
partitions of n with rl-crank m. We deduced the generating functions for the
rl-crank as given by

∞∑
m=−∞

∞∑
n=0

Mrl(m,n)zmqn =
(q; q)∞(−q; q)∞(ql; ql)∞

(zq; q)∞(z−1q; q)∞(−ql; ql)∞
.(1.5)

In this paper, we investigate the distribution of the r3-cranks of 3-regular
overpartitions. We study the monotonicity property and the unimodality of
Mr3(m,n). The main results of this paper are presented in the following theo-
rems.

Theorem 1.5. For any integers m and n ≥ 6, we have

Mr3(m,n) ≥ Mr3(m,n− 1).

Figure 1 exhibits the sequence {Mr3(0, n)} with 0 ≤ n ≤ 16.

Theorem 1.6. The sequence {Mr3(m,n)}|m|≤n is unimodal for all n ≥ 14.

Here we present the sequence {Mr3(m, 14)}|m|≤14 in Figure 2.
The rest of this paper is organized as follows. In Section 2, we provide some

results that will be used in our proofs. In Section 3, we give a proof of Theorem
1.5 which is concerned with the monotonicity property of Mr3(m,n). We prove
the unimodality of Mr3(m,n) presented in Theorem 1.6 in Section 4.

2. Preliminaries

In this section, we present some results that will be employed in our proofs.
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n
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Figure 1. The sequence {Mr3(0, n)}n≤16.

m

Mr3 (m, 14)
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Figure 2. The sequence {Mr3(m, 14)}|m|≤14.

Theorem 2.1. The coefficient of qn in

(2.1)
1− q

(q2; q)2

∞∑
k=−∞

q
(3k−1)k

2

is nonnegative for n ≥ 0.

Proof. It is obvious that

1− q

(q2; q)2
=

1− q

(1− q2)(1− q3)
=

1

(1 + q)(1− q3)
=

1− q + q2

(1 + q3)(1− q3)
=

1− q + q2

1− q6
.
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Let
∞∑

n=0

f(n)qn =
1

1− q6

∞∑
k=−∞

q
(3k−1)k

2 .

Combining (2.1), we see that Theorem 2.1 is equivalent to

f(n)− f(n− 1) + f(n− 2) ≥ 0

for all n ≥ 0.
For any nonnegative integer n, we have f(n) = |Sn|, where

Sn =
{
k | (3k − 1)k

2
≡ n (mod 6),

(3k − 1)k

2
≤ n

}
.

For example, let n = 75, we have S75 =
{
6,−3,−6

}
, thus f(75) = |S75| = 3.

Denote {at} = {0, 1, 2, 5, 7, 12, 15, 22, 26, 35, 40, 51, 57, 70, 77, . . .} the sequence
of pentagonal numbers. It is worth noticing that

∞∑
k=−∞

q
(3k−1)k

2 =

∞∑
k=1

q
(3k−1)k

2 +

∞∑
k=0

q
(3k+1)k

2 ,

and

(3k − 1)k

2
≡
(
3(k + 12j)− 1

)
(k + 12j)

2
(mod 6),

(3k + 1)k

2
≡
(
3(k + 12j) + 1

)
(k + 12j)

2
(mod 6)

for any nonnegative integers k and j. Moreover, we have that

(3k − 1)k

2
≤ (3k + 1)k

2
<

(
3(k + 1)− 1

)
(k + 1)

2
<

(
3(k + 1) + 1

)
(k + 1)

2
.

Hence we arrive at

at+24 ≡ at (mod 6).(2.2)

Table 1. The first 24 pentagonal numbers and their residues
modulo 6.

Pentagonal number 0 1 2 5 7 12 15 22 26 35 40 51
Residue modulo 6 0 1 2 5 1 0 3 4 2 5 4 3
Pentagonal number 57 70 77 92 100 117 126 145 155 176 187 210
Residue modulo 6 3 4 5 2 4 3 0 1 5 2 1 0

Here we list the first 24 pentagonal numbers and their residues modulo 6 in
Table 1. It is clear that these 24 residues contain four 0’s, 1’s, 2’s, 3’s, 4’s and
5’s, respectively. Based on this fact, we conclude that

f(n) ≥ 4

⌊
t

24

⌋
,
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f(n− 1) ≤ 4

⌊
t

24

⌋
+ 4,

f(n− 2) ≥ 4

⌊
t

24

⌋
− 1,

where at < n ≤ at+1. Thus we obtain that

f(n)− f(n− 1) + f(n− 2) ≥ 4

⌊
t

24

⌋
−
(
4

⌊
t

24

⌋
+ 4

)
+ 4

⌊
t

24

⌋
− 1

= 4

⌊
t

24

⌋
− 5.

When t ≥ 48, we have 4
⌊

t
24

⌋
− 5 ≥ 3. In view of a48 = 852, we see that

f(n)− f(n− 1) + f(n− 2) ≥ 3

for all n ≥ 852. It can be verified that f(n) − f(n − 1) + f(n − 2) ≥ 0 for
0 ≤ n ≤ 851. This completes the proof. □

More specifically, the following corollary holds.

Corollary 2.2. The coefficient of qn in

1− q

(q2; q)2

∞∑
k=−∞

q
(3k−1)k

2

is positive when n ̸= 1, 3, 6, 8, 16.

Theorem 2.3. The absolute value of the coefficient of qn in

1− q

1− q2

∞∑
k=−∞

q
(3k−1)k

2

is no more than 1 for n ≥ 0.

Proof. Let
∞∑

n=0

g(n)qn =
1

1− q2

∞∑
k=−∞

q
(3k−1)k

2 .

Thus we aim to prove that

|g(n)− g(n− 1)| ≤ 1

for all n ≥ 0.
For any nonnegative integer n, we have g(n) = |Hn|, where

(2.3) Hn =
{
k | (3k − 1)k

2
≡ n (mod 2),

(3k − 1)k

2
≤ n

}
.

Similar to (2.2), the congruence

at+8 ≡ at (mod 2)

is true. Here we list the first 8 pentagonal numbers and their residues modulo
2 in Table 2.
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Table 2. The first 8 pentagonal numbers and their residues
modulo 2.

Pentagonal number 0 1 2 5 7 12 15 22
Residue modulo 2 0 1 0 1 1 0 1 0

Let ω = ω1ω2 · · ·ω7 = 0101101 and |ω1ω2 · · ·ωi|j be the number of j in the
first i elements of ω with 0 ≤ i ≤ 7 and j = 0, 1. Here we set |ω1ω2 · · ·ωi|j = 0
if i = 0.

Suppose that at < n ≤ at+1, t ≡ i (mod 8) and n ≡ j (mod 2), we have

g(n) = 4

⌊
t

8

⌋
+ |ω1ω2 · · ·ωi|j ,

g(n− 1) = 4

⌊
t

8

⌋
+ |ω1ω2 · · ·ωi||j−1|.

Since ∣∣|ω1ω2 · · ·ωi|j − |ω1ω2 · · ·ωi||j−1|
∣∣ ≤ 1

for each 0 ≤ i ≤ 7 and j = 0, 1, we arrive at

|g(n)− g(n− 1)| ≤ 1

with n ≥ 0. This completes the proof. □

The following theorem is proved by Ji and Zang in [5].

Theorem 2.4 ([5, Theorem 6.5]). For m ≥ 3,

∞∑
n=0

(
M(m− 1, n)−M(m,n)

)
qn

= − q2m + q2m+1 + q3m+1 +
qm−1

(q2; q)m−2
− qm

(q2; q)m−2

+
q2m+5

(q2; q)m−3(1− qm)
+

m∑
k=3

q2k+2m+1

(qk; q)m−k+1
+

∞∑
k=2

qk(k+m)+3k+2m−2

(q3; q)k−2(q2; q)k+m−2

+

∞∑
k=1

qk(k+m)+4k+2m+2(1− qm−2)

(q2; q)k(q2; q)k+m−2
+

∞∑
k=1

qk(k+m)+5k+3m+1

(q2; q)k(q2; q)m−3(qm; q)k+1
.(2.4)

3. A proof of Theorem 1.5

In this section, we give a proof of Theorem 1.5.

Proof. Setting l = 3 in (1.5), we have

∞∑
m=−∞

∞∑
n=0

Mr3(m,n)zmqn =
(q; q)∞

(zq; q)∞(z−1q; q)∞

(−q; q)∞(q3; q3)∞
(−q3; q3)∞
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=
(q; q)∞

(zq; q)∞(z−1q; q)∞
(−q; q3)∞(−q2; q3)∞(q3; q3)∞

=

∞∑
m=−∞

∞∑
n=0

M(m,n)zmqn
∞∑

k=−∞

q
(3k−1)k

2 .(3.1)

The last equality follows by (1.1) and the Jacobi triple product identity

∞∑
n=−∞

znq(
n
2) = (−z; q)∞(−q/z; q)∞(q; q)∞

with q replaced by q3 and z replaced by q.
Using the equation proved by Ji and Zang [5, Eq. (2.2)] as given by

∞∑
n=0

(
M(m,n)−M(m,n− 1)

)
qn

=
(1− q)2qm

(q; q)m
+

q2m+3

(q2; q)m
+

∞∑
k=2

qk(k+m)+2k+m

(q2; q)k−1(q2; q)k+m−1
, m ≥ 0,

and (3.1), we obtain the generating function of Mr3(m,n)−Mr3(m,n− 1) as

∞∑
n=0

(
Mr3(m,n)−Mr3(m,n− 1)

)
qn

=

(
(1− q)2qm

(q; q)m
+

q2m+3

(q2; q)m
+

∞∑
k=2

qk(k+m)+2k+m

(q2; q)k−1(q2; q)k+m−1

) ∞∑
k=−∞

q
(3k−1)k

2 .(3.2)

It is clear that(
q2m+3

(q2; q)m
+

∞∑
k=2

qk(k+m)+2k+m

(q2; q)k−1(q2; q)k+m−1

) ∞∑
k=−∞

q
(3k−1)k

2(3.3)

has only nonnegative coefficients when m ≥ 0. For m ≥ 3, we have that

(1− q)2qm

(q; q)m

∞∑
k=−∞

q
(3k−1)k

2 =
qm

(q4; q)m−3

1− q

(q2; q)2

∞∑
k=−∞

q
(3k−1)k

2 .(3.4)

Applying Theorem 2.1, we find that the coefficient of qn in (3.4) is nonnegative
when m ≥ 3. By (3.2)–(3.4), we conclude that the coefficient of qn in (3.2) is
nonnegative when m ≥ 3. Hence Theorem 1.5 is verified for all m ≥ 3.

Substituting m = 2 into (3.2), we have

∞∑
n=0

(
Mr3(2, n)−Mr3(2, n− 1)

)
qn

=

(
(1− q)q2

1− q2
+

q7

(1− q2)(1− q3)
+

∞∑
k=2

qk
2+4k+2

(q2; q)k−1(q2; q)k+1

) ∞∑
k=−∞

q
(3k−1)k

2 .
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In view of Theorem 2.3, the coefficient of qn in

(1− q)q2

1− q2

∞∑
k=−∞

q
(3k−1)k

2

is no less than −1. Since
∞∑

k=−∞

q
(3k−1)k

2 = 1 + q +
∑
k ̸=0,1

q
(3k−1)k

2 ,

it is clear that the coefficient of qn in

q7

(1− q2)(1− q3)

∞∑
k=−∞

q
(3k−1)k

2

is no less than 1 with n ≥ 7. Noticing that
∞∑
k=2

qk
2+4k+2

(q2; q)k−1(q2; q)k+1

∞∑
k=−∞

q
(3k−1)k

2

has only nonnegative coefficients, and the coefficient of q6 in

(1− q)q2

1− q2

∞∑
k=−∞

q
(3k−1)k

2

is 1, we conclude that

Mr3(2, n) ≥ Mr3(2, n− 1)

when n ≥ 6.
Substituting m = 1 into (3.2), we have

∞∑
n=0

(
M(1, n)−M(1, n− 1)

)
qn

=

(
q − q2 +

q5

1− q2
+

∞∑
k=2

qk
2+3k+1

(q2; q)k−1(q2; q)k

) ∞∑
k=−∞

q
(3k−1)k

2 .

It is easy to see that the coefficient of qn in

q5

1− q2

∞∑
k=−∞

q
(3k−1)k

2

is no less than 1 when n ≥ 5. Combining the fact that the coefficient of qn in(
q − q2 +

∞∑
k=2

qk
2+3k+1

(q2; q)k−1(q2; q)k

) ∞∑
k=−∞

q
(3k−1)k

2

= − q2
∞∑

k=−∞

q
(3k−1)k

2 +

(
q +

∞∑
k=2

qk
2+3k+1

(q2; q)k−1(q2; q)k

) ∞∑
k=−∞

q
(3k−1)k

2
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= −
∞∑

k=−∞

q
(3k−1)k+4

2 +

(
q +

∞∑
k=2

qk
2+3k+1

(q2; q)k−1(q2; q)k

) ∞∑
k=−∞

q
(3k−1)k

2

is no less than −1, we arrive at

Mr3(1, n) ≥ Mr3(1, n− 1)

for all n ≥ 5.
The proof of m = 0 is similar to that of m = 2, hence the details are

omitted. Ultimately, by the fact Mr3(m,n) = Mr3(−m,n), we complete the
proof of Theorem 1.5. □

4. A proof of Theorem 1.6

We are now in a position to prove Theorem 1.6.

Proof. In view of (3.1), for any fixed integer m, we have
∞∑

n=0

(
Mr3(m− 1, n)−Mr3(m,n)

)
qn

=

∞∑
n=0

(
M(m− 1, n)−M(m,n)

)
qn

∞∑
k=−∞

q
(3k−1)k

2 .(4.1)

Applying (2.4) into (4.1), for m ≥ 3, we obtain that
∞∑

n=0

(
Mr3(m− 1, n)−Mr3(m,n)

)
qn

=

(
− q2m + q2m+1 + q3m+1 +

qm−1

(q2; q)m−2
− qm

(q2; q)m−2
+

q2m+5

(q2; q)m−3(1− qm)

+

m∑
k=3

q2k+2m+1

(qk; q)m−k+1
+

∞∑
k=2

qk(k+m)+3k+2m−2

(q3; q)k−2(q2; q)k+m−2
+

∞∑
k=1

qk(k+m)+4k+2m+2(1− qm−2)

(q2; q)k(q2; q)k+m−2

+
∞∑
k=1

qk(k+m)+5k+3m+1

(q2; q)k(q2; q)m−3(qm; q)k+1

) ∞∑
k=−∞

q
(3k−1)k

2 .(4.2)

Since m− 2 < k +m− 1 when k ≥ 1, we find that

1− qm−2

(q2; q)k+m−2

has only nonnegative coefficients with m− 2 ≥ 2.
Hence we get that(
q3m+1 +

q2m+5

(q2; q)m−3(1− qm)
+

m∑
k=3

q2k+2m+1

(qk; q)m−k+1
+

∞∑
k=2

qk(k+m)+3k+2m−2

(q3; q)k−2(q2; q)k+m−2

+
∞∑
k=1

qk(k+m)+4k+2m+2(1− qm−2)

(q2; q)k(q2; q)k+m−2
+

∞∑
k=1

qk(k+m)+5k+3m+1

(q2; q)k(q2; q)m−3(qm; q)k+1

) ∞∑
k=−∞

q
(3k−1)k

2

has only nonnegative coefficients with m ≥ 4.
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Next, we aim to show that the coefficient of qn in(
−q2m + q2m+1 +

qm−1

(q2; q)m−2
− qm

(q2; q)m−2

) ∞∑
k=−∞

q
(3k−1)k

2(4.3)

is nonnegative for all m ≥ 4.
When m = 4, (4.3) becomes(

−q8 + q9 +
q3

(q2; q)2
− q4

(q2; q)2

) ∞∑
k=−∞

q
(3k−1)k

2 .(4.4)

Since

(4.5)

(
q3

(q2; q)2
− q4

(q2; q)2

) ∞∑
k=−∞

q
(3k−1)k

2 = q3
1− q

(q2; q)2

∞∑
k=−∞

q
(3k−1)k

2 ,

by Theorem 2.1 and Corollary 2.2, we obtain that the coefficient of qn in (4.5)
is positive except for n = 4, 6, 9, 11, 19. Noticing that the coefficient of qn in

−q8
∞∑

k=−∞

q
(3k−1)k

2(4.6)

is no less than −1, we find that the coefficient of qn in (4.4) is nonnegative
when n ̸= 4, 6, 9, 11, 19. After a simple calculation, we get that (4.4) has only
nonnegative coefficients. For m ≥ 5, the proof is similar to that of m = 4 and
we omit it. Therefore, we conclude that

Mr3(m− 1, n)−Mr3(m,n) ≥ 0

for all m ≥ 4.
Setting m = 3 in (2.4) and applying it to (4.1), we obtain that

∞∑
n=0

(
Mr3(2, n)−Mr3(3, n)

)
qn

=

(
− q6 + q7 + q10 +

q2

1− q2
− q3

1− q2
+

q11

1− q3
+

q13

1− q3

+

∞∑
k=2

qk
2+6k+4

(q3; q)k−2(q2; q)k+1
+

∞∑
k=1

qk
2+7k+8(1− q)

(q2; q)k(q2; q)k+1

+

∞∑
k=1

qk
2+8k+10

(q2; q)k(q3; q)k+1

) ∞∑
k=−∞

q
(3k−1)k

2

=

(
− q6 + q7 + q10 +

q2

1− q2
− q3

1− q2
+

q11

1− q3
+

q13

1− q3
+

q20

(q2; q)3

+

∞∑
k=3

qk
2+6k+4

(q3; q)k−2(q2; q)k+1
+

∞∑
k=1

qk
2+7k+8(1− q)

(q2; q)k(q2; q)k+1
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+

∞∑
k=1

qk
2+8k+10

(q2; q)k(q3; q)k+1

) ∞∑
k=−∞

q
(3k−1)k

2 .(4.7)

Since
∞∑
k=1

qk
2+7k+8(1− q)

(q2; q)k(q2; q)k+1

∞∑
k=−∞

q
(3k−1)k

2

=

∞∑
k=1

qk
2+7k+8

(q2; q)k(q4; q)k−1

1− q

(q2; q)2

∞∑
k=−∞

q
(3k−1)k

2 ,

by Theorem 2.1, we arrive at the conclusion that the coefficient of qn in(
q7 + q10 +

q11

1− q3
+

q13

1− q3
+

∞∑
k=3

qk
2+6k+4

(q3; q)k−2(q2; q)k+1

+

∞∑
k=1

qk
2+7k+8(1− q)

(q2; q)k(q2; q)k+1
+

∞∑
k=1

qk
2+8k+10

(q2; q)k(q3; q)k+1

) ∞∑
k=−∞

q
(3k−1)k

2

is nonnegative.
Next, we consider the coefficients in(

−q6 +
q2

1− q2
− q3

1− q2
+

q20

(q2; q)3

) ∞∑
k=−∞

q
(3k−1)k

2 .

Since (
−q6 +

q2

1− q2
− q3

1− q2

) ∞∑
k=−∞

q
(3k−1)k

2

= − q6
∞∑

k=−∞

q
(3k−1)k

2 + q2
1− q

1− q2

∞∑
k=−∞

q
(3k−1)k

2 ,(4.8)

by Theorem 2.3, we can conclude that the coefficient of qn in (4.8) is no less
than −2. It is clear that the coefficient of qn in

q20

(q2; q)3

∞∑
k=−∞

q
(3k−1)k

2

is no less than 2 for all n ≥ 22. Hence the coefficient of qn in (4.7) is nonnegative
when n ≥ 22. It can be checked that Mr3(2, n) ≥ Mr3(3, n) for 14 ≤ n ≤ 21.

For m = 2, combining (4.1) and [5, Eq. (7.1), (7.2)], we have

∞∑
n=0

(
Mr3(1, n)−Mr3(2, n)

)
qn

=

(
q − q2 − q4 − q10 − q12 − q14 +

q5

1− q2
+

q19

(1− q2)(1− q3)
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+

∞∑
k=3

qk
2+5k+2

(q3; q)k−2(q2; q)k
+

∞∑
k=1

qk
2+7k+7(1− q)

(q2; q)k(q2; q)k+1

) ∞∑
k=−∞

q
(3k−1)k

2 .(4.9)

Using Theorem 2.1, we find that(
q +

q5

1− q2
+

∞∑
k=3

qk
2+5k+2

(q3; q)k−2(q2; q)k
+

∞∑
k=1

qk
2+7k+7(1− q)

(q2; q)k(q2; q)k+1

) ∞∑
k=−∞

q
(3k−1)k

2

=

(
q +

q5

1− q2
+

∞∑
k=3

qk
2+5k+2

(q3; q)k−2(q2; q)k

) ∞∑
k=−∞

q
(3k−1)k

2

+

∞∑
k=1

qk
2+7k+7

(q2; q)k(q4; q)k−1

1− q

(q2; q)2

∞∑
k=−∞

q
(3k−1)k

2

has only nonnegative coefficients. Clearly, the coefficient of qn in(
−q2 − q4 − q10 − q12 − q14

) ∞∑
k=−∞

q
(3k−1)k

2

is no less than −5.
Notice that the coefficient of qn in

1

(1− q2)(1− q3)
(1 + q + q2) =

1

(1− q)(1− q2)
(4.10)

can be interpreted as the number of partitions of n formed by 1 and 2. We
obtain that the coefficient of qn in (4.10) is no less than 5 for n ≥ 2× 4. Hence
the coefficient of qn in

q19

(1− q2)(1− q3)
(1 + q + q2)(4.11)

is no less than 5 for n ≥ 27. It is clear that the coefficient of qn in

q19

(1− q2)(1− q3)

∞∑
k=−∞

q
(3k−1)k

2(4.12)

is no less than the coefficient of qn in (4.11). Therefore the coefficient of qn in
(4.12) is no less than 5 for n ≥ 27.

Thus the coefficients of qn in (4.9) is nonnegative when n ≥ 27. It can be
checked that Mr3(1, n) ≥ Mr3(2, n) for 14 ≤ n ≤ 26.

For m = 1, according to (4.1) and Theorem 1.2, we obtain that
∞∑

n=0

(
Mr3(0, n)−Mr3(1, n)

)
qn

=
(
1− 2q + q3 + q4 − q7 − q9 + q10 − q11 + 2q12 − q13 + 2q14 − q15

+ 2q16 − 2q17 + 3q18 − 3q19 + 3q20 − 2q21 + 3q22 − 3q23 + 6q24

− 4q25 + 6q26 − 2q27 + 7q28 − 4q29 + 11q30 − 5q31 + 12q32 − 3q33
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+ 13q34 − 4q35 + 20q36 − 6q37 + 22q38 − q39 + 27q40 − 3q41

+ 37q42 − q43 +

∞∑
n=44

bnq
n
) ∞∑

k=−∞

q
(3k−1)k

2 ,(4.13)

where {bn}∞n=0 is a sequence of nonnegative integers. Clearly, the coefficient of
qn in (4.13) is no less than

−2−1−1−1−1−1−2−3−2−3−4−2−4−5−3−4−6−1−3−1 = −50.

Applying the inequalities (9.32) and (9.34) in [5], we have that

bn = M(0, n)−M(1, n)

≥ n2

48
− 2n+ 48− n− 21

2
− 3− n− 35

3
for n ≥ 106. When n ≥ 136, we drive that

n2

48
− 2n+ 48− n− 21

2
− 3− n− 35

3
=

n(n− 136)

48
+

403

6
> 50.

This yields the positivity of the coefficient of qn in (4.13) for all n ≥ 136. For
14 ≤ n ≤ 135, it can be checked that Mr3(0, n) ≥ Mr3(1, n). This completes
the proof. □
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