DOI QR코드

DOI QR Code

Effect of Ramping Rate on the Durability of Proton Exchange Membrane Water Electrolysis During Dynamic Operation Using Triangular Voltage Cycling

  • Hye Young Jung (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Yong Seok Jun (Graduate School of Energy and Environment, KU-KIST Green School, Korea University) ;
  • Kwan-Young Lee (Department of Chemical and Biological Engineering, Korea University) ;
  • Hyun S. Park (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Sung Ki Cho (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Jong Hyun Jang (Hydrogen.Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
  • Received : 2023.09.27
  • Accepted : 2023.11.06
  • Published : 2024.05.31

Abstract

Proton exchange membrane water electrolysis (PEMWE) is an efficient method for utilizing renewable energy sources such as wind and solar powers to produce green hydrogen. For PEMWE powered by renewable energy sources, its durability is a crucial factor in its performance since irregular and fluctuating characteristics of renewable energy sources, especially for wind power, can deteriorate the stability of PEMWE. Triangular voltage cycle is well able to simulate fluctuating wind power, but its effect on the durability has not been investigated extensively. In this study, the performance degradation of the PEMWE cell operated with the triangular voltage cycling was investigated at different ramping rates. The measured current responses during the cycling gradually decreased for both ramping rates, and I-V curve measurements before and after the cycling confirmed the degradation of the performances of PEMWE. For both measurements, the degradation rate was larger for 300 mV s-1 than 30 mV s-1, and they were determined as 0.36 and 1.26 mV h-1 (at the current density of 2 A cm-2) at the ramping rates of 30 and 300 mV s-1, respectively. The comparison with other studies on triangular voltage cycling also indicate that an increase in the ramping rate accelerates the deterioration of the PEMWE performance. X-ray photoelectron spectroscopy and transmission electron microscopy results showed that the Ir catalyst was oxidized and did not dissolve during the voltage cycling. This study suggests that the ramping rate of the triangular voltage cycling is an important factor for the evaluation of the durability of PEMWE cells.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (NRF-2020M1A2A2080806 and NRF-2022M3J1A1085384), and the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Ministry of Trade, Industry & Energy (MOTIE) (No. 20203010030010), and Korea Institute of Science and Technology (2E32591). This work was also supported by the BK21 FOUR (Fostering Outstanding Universities for Research) Project in 2022.

References

  1. IEA, Global Hydrogen Review 2021, IEA, Paris, France, 2021. 
  2. M. K. Cho, A. Lim, S. Y. Lee, H.-J. Kim, S. J. Yoo, Y.-E. Sung, H. S. Park, and J. H. Jang, J. Electrochem. Sci. Technol., 2017, 8(3), 183-196. 
  3. A. Lim, M. K. Cho, S. Y. Lee, H.-J. Kim, S. J. Yoo, Y.-E. Sung, J. H. Jang, and H. S. Park, J. Electrochem. Sci. Technol., 2017, 8(4), 265-273. 
  4. S.-A. Park, K. Shim, K.-S. Kim, Y. H. Moon, and Y.-T. Kim, J. Electrochem. Sci. Technol., 2019, 10(4), 402-407. 
  5. M. Carmo, D. L. Fritz, J. Mergel, and D. Stolten, Int. J. Hydrogen Energy, 2013, 38(12), 4901-4934. 
  6. A. Buttler and H. Spliethoff, Renew. Sustain. Energy Rev., 2018, 82, 2440-2454 
  7. F. N. Khatib, T. Wilberforce, O. Ijaodola, E. Ogungbemi, Z. El-Hassan, A. Durrant, J. Thompson, and A. G. Olabi, Renew. Sustain. Energy Rev., 2019, 111, 1-14. 
  8. Y. Honsho, M. Nagayama, J. Matsuda, K. Ito, K. Sasaki, and A. Hayashi, J. Power Sources, 2023, 564, 232826. 
  9. S. M. Alia, S. Stariha, and R. L. Borup, J. Electrochem. Soc., 2019, 166(15), F1164. 
  10. S. A. Grigoriev, K. A. Dzhus, D. G. Bessarabov, and P. Millet, Int. J. Hydrogen Energy, 2014, 39(35), 20440-20446. 
  11. C. Rozain, E. Mayousse, N. Guillet, and P. Millet, Appl. Catal. B: Environ., 2016, 182, 123-131. 
  12. S. H. Frensch, F. Fouda-Onana, G. Serre, D. Thoby, S. S. Araya, and S. K. Kaer, Int. J. Hydrogen Energy, 2019, 44(57), 29889-29898. 
  13. A. Weiss, A. Siebel, M. Bernt, T.-H. Shen, V. Tileli, and H. A. Gasteiger, J. Electrochem. Soc., 2019, 166(8), F487. 
  14. U. Babic, M. Tarik, T. J. Schmidt, and L. Gubler, J. Power Sources, 2020, 451, 227778. 
  15. Y. Honsho, M. Nagayama, K. Sasaki, and A. Hayashi, ECS Trans., 2020, 98(9), 687. 
  16. C. Spori, C. Brand, M. Kroschel, and P. Strasser, J. Electrochem. Soc., 2021, 168(3), 034508. 
  17. S. M. Alia, K. S. Reeves, H. Yu, J. Park, N. Kariuki, A. J. Kropf, D. J. Myers, and D. A. Cullen, J. Electrochem. Soc., 2022, 169(5), 054517-054531. 
  18. A. Voronova, H.-J. Kim, J. H. Jang, H.-Y. Park, and B. Seo, Int. J. Energy Res., 2022, 46(9), 11867-11878. 
  19. C. Rakousky, U. Reimer, K. Wippermann, S. Kuhri, M. Carmo, W. Lueke, and D. Stolten, J. Power Sources, 2017, 342, 38-47. 
  20. M. Yasutake, D. Kawachino, Z. Noda, J. Matsuda, S. M. Lyth, K. Ito, A. Hayashi, and K. Sasaki, J. Electrochem. Soc., 2020, 167(12), 124523. 
  21. E. Brightman, J. Dodwell, N. van Dijk, and G. Hinds, Electrochem. Commun., 2015, 52, 1-4. 
  22. S. Zhao, A. Stocks, B. Rasimick, K. More, and H. Xu, J. Electrochem. Soc., 2018, 165(2), F82. 
  23. R. E. Clarke, S. Giddey, F. T. Ciacchi, S. P. S. Badwal, B. Paul, and J. Andrews, Int. J. Hydrogen Energy, 2009, 34(6), 2531-2542 
  24. G. Tsotridis and A. Pilenga, EU harmonized protocols for testing of low temperature water electrolyzers, Publications Office of the European Union, Luxembourg, 2021, JRC122565. 
  25. Q. Feng, X.-Z. Yuan, G. Liu, B. Wei, Z. Zhang, H. Li, and H. Wang, J. Power Sources, 2017, 366, 33-55. 
  26. P. Assmann, A. S. Gago, P. Gazdzicki, K. A. Friedrich, and M. Wark, Curr. Opin. Electrochem., 2020, 21, 225-233. 
  27. A. Z. Tomic, I. Pivac, and F. Barbir, J. Power Sources, 2023, 557, 232569. 
  28. O. Panchenko, M. Carmo, M. Rasinski, T. Arlt, I. Manke, M. Mueller, and W. Lehnert, Mater. Today Energy, 2020, 16, 100394. 
  29. E. Leonard, , A. D. Shum, N. Danilovic, C. Capuano, K. E. Ayers, L. M. Pant, A. Z. Weber, X. Xiao, D. Y. Parkinson, and I. V. Zenyuk, Sustainable Energy Fuels, 2020, 4(2), 921-931. 
  30. H. Groenemans, G. Saur, C. Mittelsteadt, J. Lattimer, and H. Xu, Curr. Opin, 2022, 37, 100828. 
  31. V. Pfeifer, T. E. Jones, J. J. V. Velez, C. Massue, R. Arrigo, D. Teschner, F. Girgsdies, M. Scherzer, M. T. Greiner, J. Allan, M. Hashagen, G. Weinberg, S. Piccinin, M. Havecker, A. Knop-Gericke, R. Schlogl, Surf. Interface Anal., 2016, 48(5), 261-273. 
  32. H.-Y. Jeong, J. Oh, G. S. Yi, H.-Y. Park, S. K. Cho, J. H. Jang, S. J. Yoo, and H. S. Park, Appl. Catal. B: Environ., 2023, 330, 122596. 
  33. J. H. Oh, G. H. Han, H. Kim, H. W. Jang, H. S. Park, S. Y. Kim, and S. H. Ahn, Chem. Eng. J., 2021, 420, 127696. 
  34. X. Tan, J. Shen, N. Semagina, and M. Secanell, J. Catal., 2019, 371, 57-70.