DOI QR코드

DOI QR Code

Exploring the Impact of AI-based Prompt Design Method on Architectural Design Process and Designers' Role

AI 기반 프롬프트 디자인 방법 도입에 따른 건축디자인 프로세스 및 디자이너의 역할 고찰

  • Chang, Ze-Yuan (Dept. of Interior & Environmental Design, Pusan National University) ;
  • Han, Jeong-won (Dept. of Interior & Environmental Design, Pusan National University)
  • 창쩌위안 (부산대 실내환경디자인학과 ) ;
  • 한정원 (부산대 실내환경디자인학과)
  • Received : 2024.02.16
  • Accepted : 2024.05.02
  • Published : 2024.05.30

Abstract

This study explores AI-based prompt design methods and their impact on architectural design process and designers, examining how these approaches alter traditional design processes and redefine architects' roles. By synthesizing the insights of six design practitioners, this study contrasts prompt design with conventional methods, exploring their practical applications and potential future directions. It also delves into the challenges and limitations posed by AI technologies in this evolving context. This study reveals that AI-based prompt design represents a new design paradigm, where prompted keywords play a central role in streamlining workflow, boosting creativity, and facilitating the translation of concepts into architectural schematics. This paradigm shift transforms architects from solitary designers into AI collaborators, necessitating a broader skill set in design literacy. Prompt design, driven by designer-suggested keywords or prompts, enables a more direct and precise process, allowing architects to clearly define their goals and scope. The evolving role of architects reflects this collaborative approach, with AI handling visualization tasks while designers focus on design decision-making. This shift underscores the ongoing relevance and expertise of architects, highlighting their new role as diversified engineering designers in a dynamic AI-driven environment.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의해 연구되었음.

References

  1. Eilouti, B. (2019). Shape grammars as a reverse engineering method for the morphogenesis of architectural facade design. Frontiers of Architectural Research, 8(2), 191-200. https://doi.org/10.1016/j.foar.2019.03.006
  2. Ghimire, P., Kim, K., & Acharya, M. (2024). Opportunities and challenges of generative AI in construction industry: focusing on adoption of text-based models. Buildings, 14(1), 17-21.
  3. Huang, C., Zhang, G., Yao, J., Wang, X., Calautit, J. K., Zhao, C., An, N., & Peng, X. (2022). Accelerated environmental performance-driven urban design with generative adversarial network. Building and Environment, 224, 2-5. DOI:10.1016/j.buildenv.2022.109575
  4. Jing, Y., Zhou, G., Zhang, C., Chang, F., Yan, H., & Xiao, Z. (2024). XMKR: Explainable manufacturing knowledge recommendation for collaborative design with graph embedding learning. Advanced Engineering Informatics, 59, 1-4, DOI:10.1016/j.aei.2023.102339
  5. Ko, H. K., Park, G., Jeon, H., Jo, J., Kim, J., & Seo, J. (2023, March 27-31). Large-scale text-to-image generation models for visual artists' creative works [Paper presentation]. IUI '23: 28th International Conference on Intelligent User Interfaces, Sydney, NSW, Australia.
  6. Krauskova, V., & Pifko, H. (2021). Use of artificial intelligence in the field of sustainable architecture: current knowledge. Architecture Papers of the Faculty of Architecture and Design STU, 26(1), 20-29. https://doi.org/10.2478/alfa-2021-0004
  7. Liao, W., Lu, X., Fei, Y., Gu, Y., & Huang, Y. (2024). Generative AI design for building structures. Automation in Construction, 157, 2-5, DOI:10.1016/j.autcon.2023.105187
  8. Liu, Y. E., & Huang, Y. M. (2024). Exploring the perceptions and continuance intention of AI-based text-to-image technology in supporting design ideation. International Journal of Human-Computer Interaction, 1-13. DOI:10.1080/10447318.2024.2311975
  9. Ma, H., & Zheng, H. (2023). Text semantics to image generation: a method of building facades design base on Stable Diffusion model. Phygital Intelligence.CDRF 2023, 24-34.
  10. Muratovski, G. (2021). Research for designers: A guide to methods and practice. 1 st ed., SAGE Publications Ltd., 1-100.
  11. NCS. (n.d.). NCS/Learning Module Search. National Competency Standards Homepage, Retrieved October 10, 2023 from https://www.ncs.go.kr/index.do
  12. Oppenlaender, J. (2022, November 16-18). The creativity of text-to-image generation [Paper presentation]. Academic Mindtrek '22: 25th International Academic Mindtrek Conference, Tampere, Finland.
  13. Oppenlaender, J. (2023). A taxonomy of prompt modifiers for text-to-image generation. Behaviour & Information Technology, 1-14. DOI:10.1080/0144929X.2023.2286532
  14. Pena, M. L. C., Carballal, A., Rodriguez-Fernandez, N., Santos, I., & Romero, J. (2021). Artificial intelligence applied to conceptual design. A review of its use in architecture. Automation in Construction, 124(16), 1-30.
  15. Ploennigs, J., & Berger, M. (2023). Ai art in architecture. AI in Civil Engineering, 2(1), 1-11. https://doi.org/10.1007/s43503-023-00010-6
  16. Raina, A., Cagan, J., & McComb, C. (2019). Transferring design strategies from human to computer and across design problems. Journal of Mechanical Design, 141(11), 1-7.
  17. Sacks, R., Girolami, M., & Brilakis, I. (2020). Building information modelling, artificial intelligence and construction tech. Developments in the Built Environment, 4(10), 1-9.
  18. Saharia, C., Chan, W., Chang, H., Lee, C., Ho, J., Salimans, T., Fleet, D. J., & Norouzi, M. (2022, August 7-11). Palette: Image-to-image diffusion models [Paper presentation]. SIGGRAPH '22: Special Interest Group on Computer Graphics and Interactive Techniques Conference, Vancouver, BC, Canada.
  19. Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D. J., & Norouzi, M. (2022b). Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4), 4713-4726.
  20. Shin, J., & Lee, J. (2023). An approach to utilizing generative AI for spatial design visualization based on space identity; focused on the implementation of space identity visualization model and its application in the early design phase. Journal of the Korean Institute of Interior Design, 32(6), 26-36. https://doi.org/10.14774/JKIID.2023.32.6.026
  21. Tao, W., Gao, S., & Yuan, Y. (2023). Boundary crossing: an experimental study of individual perceptions toward AIGC. Frontiers in Psychology, 14, 1-12. DOI:1185880.10.3389/fpsyg.2023.1185880
  22. Wach, K., Duong, C. D., Ejdys, J., Kazlauskaite, R., Korzynski, P., Mazurek, G., Paliszkiewicz, J., & Ziemba, E. (2023). The dark side of generative artificial intelligence: a critical analysis of controversies and risks of ChatGPT. Entrepreneurial Business and Economics Review, 11(2), 7-30.
  23. Wang, L., Liu, J., Zeng, Y., Cheng, G., Hu, H., Hu, J., & Huang, X. (2023). Automated building layout generation using deep learning and graph algorithms. Automation in Construction, 154, 1-6, DOI:10.1016/j.autcon.2023.105036
  24. Wiggers, K. (2023, November 3). Stability AI's latest tool uses AI to generate 3D models. https://techcrunch.com/2023/11/02/stability-ais-latest-tool-uses-ai-to-generate-3d-models/
  25. Yuksel, N., Borklu, H. R., Sezer, H. K., & Canyurt, O. E. (2023). Review of artificial intelligence applications i n engineering design perspective. Engineering Applications of Artificial Intelligence, 118, 1-26, DOI:10.1016/j.engappai.2022.105697
  26. Zhang, Y., Chen, Y., & Li, X. (2023). Integrated framework of knowledge-based decision support system for user-centered residential design. Expert Systems with Applications, 216, 1-14, DOI:10.1016/j.eswa.2022.119412
  27. Zhou, Y. (2022). Design with AI: Prototyping, Mechanism and Idea of AI Tools. Thesis, Polytechnic University of Milan