DOI QR코드

DOI QR Code

The Effects of CO2 Enrichment on the Radial Growth of Pinus densiflora

  • En-Bi CHOI (Department of Forest Products, Chungbuk National University) ;
  • Hyemin LIM (Department of Forest Bio-resources, National Institute of Forest Science) ;
  • Jeong-Wook SEO (Department of Wood & Paper Science, Chungbuk National University)
  • 투고 : 2024.04.04
  • 심사 : 2024.04.29
  • 발행 : 2024.05.25

초록

The current study aimed to investigate the impact of CO2 enrichment on the width of annual tree rings, earlywood and latewood, and the area of annual growth of Pinus densiflora Siebold & Zucc. grown in open-top chamber (OTC). To this end, two CO2 enrichment cases were considered, namely 1.4 × increment (560 ppm in OTC-II) and 1.8 × (720 ppm in OTC-III) were compared with the current atmosphere (400 ppm in OTC-I). The CO2 enrichment conditions for a period of 12 years (2010-2021) were considered, and all measurements were done through image analysis. The study showed that the increment in CO2 concentrations positively affected the tree growth. The measurement data from the trees in OTC-III were considerably higher than those from OTC-I, whereas those from OTC-II were slightly higher than those from OTC-I. Decreasing patterns of the measured widths and area in 6-7 years after the beginning of CO2 enrichment was found for all the OTCs. These patterns were possibly due to changes in the physiological features, such as aging. The findings of the present study can have potential uses as fundamental data for forest management considering CO2 concentrations.

키워드

과제정보

This research was supported by Chungbuk National University Korea National University Development Project (2022).

참고문헌

  1. Abramoff, M.D., Magalhaes, P.J., Ram, S.J. 2004. Image processing with ImageJ. Biophotonics International 11(7): 36-43.
  2. Avery, T.E., Burkhart, H.E. 2002. Forest Measurements. 5th ed. McGraw-Hill, New York, NY, USA.
  3. Cabral-Aleman, C., Pompa-Garcia, M., Acosta-Hernandez, A.C., Zuniga-Vasquez, J.M., Camarero, J.J. 2017. Earlywood and latewood widths of Picea chihuahuana show contrasting sensitivity to seasonal climate. Forests 8(5): 173.
  4. Ceulemans, R., Mousseau, M. 1994. Tansley review no. 71 effects of elevated atmospheric CO2 on woody plants. New Phytologist 127(3): 425-446.
  5. Choi, E.B., Kim, Y.J., Park, J.H., Park, C.R., Seo, J.W. 2020. Reconstruction of resin collection history of pine forests in Korea from tree-ring dating. Sustain- ability 12(21): 9118.
  6. Cuny, H.E., Fonti, P., Rathgeber, C.B.K., von Arx, G., Peters, R.L., Frank, D.C. 2019. Couplings in cell differentiation kinetics mitigate air temperature influence on conifer wood anatomy. Plant Cell and Environment 42(4): 1222-1232.
  7. Cuny, H.E., Rathgeber, C.B.K., Frank, D., Fonti, P., Fournier, M. 2014. Kinetics of tracheid development explain conifer tree-ring structure. New Phytologist 203(4): 1231-1241.
  8. Dabros, A., Fyles, J.W. 2010. Effects of open-top chambers and substrate type on biogeochemical processes at disturbed boreal forest sites in northwestern Quebec. Plant and Soil 327: 465-479.
  9. Fathurrahman, F. 2023. Effects of carbon dioxide concentration on the growth and physiology of Albizia saman (Jacq.) Merr. Journal of Ecological Engineering 24(9): 302-311.
  10. Friedlingstein, P., O'Sullivan, M., Jones, M.W., Andrew, R.M., Gregor, L., Hauck, J., Quere, C.L., Luijkx, I.T., Olsen, A., Peters, G.P., Peters, W., Pongratz, J., Schwingshackl, C., Sitch, S., Canadell, J.G., Ciais, P., Jackson, R.B., Alin, S.R., Alkama, R., Arneth, A., Arora, V.K., Bates, N.R., Becker, M., Bellouin, N., Bittig, H.C., Bopp, L., Chevallier, F., Chini, L.P., Cronin, M., Evans, W., Falk, S., Feely, R.A., Gasser, T., Gehlen, M., Gkritzalis, T., Gloege, L., Grassi, G., Gruber, N., Gurses, O., Harris, I., Hefner, M., Houghton, R.A., Hurtt, G.C., Iida, Y., Ilyina, T., Jain, A.K., Jersild, A., Kadono, K., Kato, E., Kennedy, D., Goldewijk, K.K., Knauer, J., Korsbakken, J.I., Landschutzer, P., Lefevre, N., Lindsay, K., Liu, J., Liu, Z., Marland, G., Mayot, N., McGrath, M.J., Metzl, N., Monacci, N.M., Munro, D.R., Nakaoka, S.I., Niwa, Y., O'Brien, K., Ono, T., Palmer, P.I., Pan, N., Pierrot, D., Pocock, K., Poulter, B., Resplandy, L., Robertson, E., Rodenbeck, C., Rodriguez, C., Rosan, T.M., Schwinger, J., Seferian, R., Shutler, J.D., Skjelvan, I., Steinhoff, T., Sun, Q., Sutton, A.J., Sweeney, C., Takao, S., Tanhua, T., Tans, P.P., Tian, X., Tian, H., Tilbrook, B., Tsujino, H., Tubiello, F., Werf, G.R., Walker, A.P., Wanninkhof, R., Whitehead, C., Wranne, A.W., Wright, R., Yuan, W., Yue, C., Yue, X., Zaehle, S., Zeng, J., Zheng, B. 2022. Global carbon budget 2022. Earth System Science Data 14(11): 4811-4900.
  11. Guay, R., Gagnon, R., Morin, H. 1992. A new automatic and interactive tree ring measurement system based on a line scan camera. The Forestry Chronicle 68(1): 138-141.
  12. Hollister, R.D., Elphinstone, C., Henry, G.H.R., Bjorkman, A.D., Klanderud, K., Bjork, R.G., Bjorkman, M.P., Bokhorst, S., Carbognani, M., Cooper, E.J., Dorrepaal, E., Elmendorf, S.C., Fetcher, N., Gallois, E.C., Gudmundsson, J., Healey, N.C., Jonsdottir, I.S., Klarenberg, I.J., Oberbauer, S.F., Macek, P., May, J.L., Mereghetti, A., Molau, U., Petraglia, A., Rinnan, R., Rixen, C., Wookey, P.A. 2023. A review of open top chamber (OTC) performance across the ITEX network. Arctic Science 9(2): 331-344.
  13. Jasinska, A.K., Alber, M., Tullus, A., Rahi, M., Sellin, A. 2015. Impact of elevated atmospheric humidity on anatomical and hydraulic traits of xylem in hybrid aspen. Functional Plant Biology 42(6): 565-578.
  14. Jeong, H.M., Kim, Y.J., Seo, J.W. 2017. Relationships between vessel-lumen-area time series of Quercus spp. at Mt. Songni and corresponding climatic factors. Journal of the Korean Wood Science and Technology 45(1): 72-84.
  15. Johnson, K., Li, H., Ilyina, T. 2023. Variability of atmospheric CO2 in earth system model large-ensemble simulations with an interactive carbon cycle. https://meetingorganizer.copernicus.org/EGU23/EGU23-7740.html
  16. Ju, J.D., Shin, C.S., Seo, J.W. 2023. Tree-ring analysis for understanding growth of Larix kaempferi. Journal of the Korean Wood Science and Technology 51(5): 345-357.
  17. Kallarackal, J., Roby, T.J. 2012. Responses of trees to elevated carbon dioxide and climate change. Bio- diversity and Conservation 21(5): 1327-1342.
  18. Kim, T.L., Lim, H., Chung, H., Veerappan, K., Oh, C. 2022. Elevated CO2 alters the physiological and transcriptome responses of Pinus densiflora to long-term CO2 exposure. Plants 11(24): 3530.
  19. Kimball, B.A., Idso, S.B., Ohnson, S., Rillig, M.C. 2007. Seventeen years of carbon dioxide enrichment of sour orange trees: Final results. Global Change Biology 13(10): 2171-2183.
  20. Korea Forest Research Institute. 2023. Stem Volume, Biomass, and Yield Table. Korea Forest Institute, Seoul, Korea.
  21. Kwon, O.K., Kim, N.H., Kim, J.S., Seo, J.W., Jeong, Y.J. 2020. Wood Anatomy. Korean Society of Wood Science and Technology, Seoul, Korea.
  22. Kwon, S.M., Kim, N.H. 2005. Annual ring formation of major wood species growing in Chuncheon, Korea (I): The period of cambium activity. Journal of the Korean Wood Science and Technology 33(4): 1-8.
  23. Lee, J.C., Kim, D.H., Kim, G.N., Kim, P.G., Han, S.H. 2012. Long-term climate change research facility for trees: CO2-enriched open top chamber system. Korean Journal of Agricultural and Forest Meteorology 14(1): 19-27.
  24. Lee, W.H., Kim, N.H., Kim, B.R., Kim, Y.S., Byeon, H.S., So, W.T., Yeo, W.M., Oh, S.W., Lee, W.H., Lee, W.H. 2008. Wood Physics and Mechanics. Hyangmunsa, Seoul, Korea.
  25. Lim, J.H., Park, G.E., Moon, N.H., Moon, G.H., Shin, M.Y. 2017. Analysing the relationship between tree-ring growth of Pinus densiflora and climatic factors based on national forest inventory data. Journal of Korean Society of Forest Science 106(2): 249-257.
  26. National Institute of Forest Science [NIFoS]. 2017. The Study on Climate-resilient Tree Species using Open Top Chamber (OTC). NIFoS, Seoul, Korea.
  27. Nunes, L.J.R. 2023. The rising threat of atmospheric CO2: A review on the causes, impacts, and mitigation strategies. Environments 10(4): 66.
  28. Park, J.H., Choi, E.B., Park, H.C., Lee, N.Y., Seo, J.W. 2021. Intra-annual dynamics of cambial and xylem phenology in subalpine conifers at Deogyusan National Park in the Republic of Korea. Journal of Wood Science 67(1): 22.
  29. Park, S.Y., Eom, C.D., Seo, J.W. 2015. Seasonal change of cambium activity of pine trees at different growth sites. Journal of the Korean Wood Science and Technology 43(4): 411-420.
  30. Peng, M., Li, X., Peng, J., Cui, J., Li, J., Wei, Y., Wei, X., Li, J. 2022. Early summer temperature variation recorded by earlywood width in the northern boundary of Pinus taiwanensis Hayata in central China and its linkages to the Indian and pacific oceans. Biology 11(7): 1077.
  31. Pennisi, E. 2020. Carbon dioxide increase may promote 'insect apocalypse'. Science 368(6490): 459.
  32. Plomion, C., Leprovost, G., Stokes, A. 2001. Wood formation in trees. Plant Physiology 127: 1513-1523.
  33. Raison, J., Eamus, D., Gifford, R., McGrath, J. 2007. The Feasibility of Forest Free Air CO2 Enrichment (FACE) Experimentation in Australia. Australian Government, Canberra, Australia.
  34. Raviraja, S. 2023. Future climate change. GSC Advanced Research and Reviews 14(01): 050-054.
  35. Reed, C.C., Ballantyne, A.P., Cooper, L.A., Sala, A. 2018. Limited evidence for CO2-related growth enhancement in northern Rocky Mountain lodgepole pine populations across climate gradients. Global Change Biology 24(9): 3922-3937.
  36. Ryu, D., Bae, J., Park, J., Cho, S., Moon, M., Oh, C.Y., Kim, H.S. 2014. Reponses of native trees species in Korea under elevated carbon dioxide condition: Open top chamber experiment. Korean Journal of Agricultural and Forest Meteorology 16(3): 199-212.
  37. Sabine, C.L., Feely, R.A. 2015. Climate and Climate Change: Carbon Dioxide. In: Reference Module in Earth Systems and Environmental Sciences, from Encyclopedia of Atmospheric Sciences, 2nd ed., Ed. by North, G.R., Pyle, J., and Zhang, F. Academic Press, Cambridge, MA, USA. pp. 10-17.
  38. Schneider, C.A., Rasband, W.S., Eliceiri, K.W. 2012. NIH image to ImageJ: 25 Years of image analysis. Nature Methods 9(7): 671-675.
  39. Schweingruber, F.H. 1991. Tree Rings: Basics and Applications of Dendrochronology. Springer, Dordrecht, The Netherlands.
  40. Schweingruber, F.H. 1998. Tree Rings and Environment Dendroecology. Paul Haupt, Bern, Switzerland.
  41. Seo, D.J., Oh, C.Y., Han, S.H., Lee, J.C. 2014. Effects of elevated CO2concentration on leaf phenology of Quercus acutissima. Korean Journal of Agricultural and Forest Meteorology 16(3): 213-218.
  42. Seo, J.W., Choi, E.B., Ju, J.D., Shin, C.S. 2017a. The association of intra-annual cambial activities of Pinus koraiensis and Chamaecyparis pisifera planted in Mt. Worak with climatic factors. Journal of the Korean Wood Science and Technology 45(1): 43-52.
  43. Seo, J.W., Choi, E.B., Park, J.H., Kim, Y.J., Lim, H.I. 2021. The role of aging and wind in inducing death and/or growth reduction in Korean fir (Abies koreana Wilson) on Mt. Halla, Korea. Atmosphere 12(9): 1135.
  44. Seo, J.W., Jeong, H.M., Sano, M., Choi, E.B., Park, J.H., Lee, K.H., Kim, Y.J., Park, H.C. 2017b. Establishing tree ring δ18O chronologies for principle tree species (T. cuspidata, P. koraiensis, A. koreana, Q. mongolica) at subalpine zone in Mt. Jiri National park and their correlations with the corresponding climate. Journal of the Korean Wood Science and Technology 45(5): 661-670.
  45. Seo, J.W., Kim, Y.J., Choi, E.B., Park, J.H., Kim, J.H. 2019. Investigation of death years and inter-annual growth reduction of Korean firs (Abies Koreana) at Yeongsil in Mt. Halla. Journal of the Korean Society of Environmental Restoration Technology 22(3): 1-14.
  46. Souza, J.P., Melo, N.M.J., Halfeld, A.D., Vieira, K.I.C., Rosa, B.L. 2019. Elevated atmospheric CO2 concentration improves water use efficiency and growth of a widespread Cerrado tree species even under soil water deficit. Acta Botanica Brasilica 33(3): 425-436.
  47. Watanabe, Y., Wakabayashi, K., Kitaoka, S., Satomura, T., Satomura, T., Eguchi, N., Watanabe, M., Nakaba, S., Takagi, K., Sano, Y., Funada, R., Koike, T. 2016. Response of tree growth and wood structure of Larix kaempferi, Kalopanax septemlobus and Betula platyphylla saplings to elevated CO2 concentration for 5 years exposure in a FACE system. Trees 30(5): 1569-1579.
  48. Yoo, H.J., Ju, J.D., Park, J.H., Shin, C.S., Eom, C.D., Seo, J.W. 2021. Estimation of the optimal periods for planting and felling Larix kaempferi based on the period of its cambial activity. Journal of the Korean Wood Science and Technology 49(5): 399-415.
  49. Yu, T., Chen, Y. 2019. Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review. Science of the Total Environment 655: 865-879.
  50. Zhang, J.H., Han, S.J., Song, G.Z. 2005. Turbulence statistics of natural airflow within a large open top chamber. Journal of Forestry Research 16(4): 303-305.
  51. Zhirnova, D.F., Belokopytova, L.V., Babushkina, E.A., Crivellaro, A., Vaganov, E.A. 2021. Earlywood structure of evergreen conifers near forest line is habitat driven but latewood depends on species and seasons. Trees 35(2): 479-492.