DOI QR코드

DOI QR Code

The Application of Entomopathogenic Fungi Metarhizium anisopliae, Beauveria bassiana, and Trichoderma harzianum for Coptotermes curvignathus and Cryptotermes cynocephalus Termite Control in Indonesia

  • Niken SUBEKTI (Biology Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang) ;
  • Ari SUSILOWATI (Biology Study Program, Mathematics and Natural Sciences Faculty, Universitas Sebelas Maret) ;
  • Elizabeth Novi KUSUMANINGRUM (Biology Study Program, Faculty of Mathematic and Natural Sciences, Universitas Terbuka) ;
  • Anita FADHILA (Biology Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang) ;
  • Sania SALSABILA (Biology Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang) ;
  • Citra Anisah ZAHRA (Biology Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang) ;
  • Nasiha Al SABRINA (Biology Study Program, Faculty of Mathematics and Natural Sciences, Universitas Negeri Semarang) ;
  • Ikhsan GUSWENRIVO (Research Center for Applied Zoology, National Research and Innovations Agency (NRIA)) ;
  • Yayan SANJAYA (Biology Study Program, Faculty of Mathematic and Natural Sciences Education Faculty, Universitas Pendidikan Indonesia) ;
  • Cepi KURNIAWAN (Chemistry Study Program, Faculty of Mathematic and Natural Sciences, Universitas Negeri Semarang) ;
  • Apri Heri ISWANTO (Department of Forest Product, Faculty of Forestry, Universitas Sumatera Utara) ;
  • Mia MIRANTI (Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran)
  • 투고 : 2023.12.20
  • 심사 : 2024.03.26
  • 발행 : 2024.05.25

초록

In Indonesia, Coptotermes curvignathus Holmgren and Cryptotermes cyanocephalus Light termite attacks can damage wood and causing losses of 8.7 trillion rupiah per year. Wood treatment and soil barrier are very important to protect structures and their components from termite infestation. The application of synthetic chemicals that pose risks to the environment and human health. The growing movement to replace these chemicals with new termiticides that are safe for the environment in place of persistent organic pollutants. Efficacy performance in entomopathogenic fungi spores such as that produce decanoic acid, hexadecanoic acid, palmitic acid, and octadecadienoic acid are potential compounds that provide for ecofriendly termite control. Entomopathogenic fungal spores from Metarhizium anisopliae, Trichoderma harzianum, and Beauveria bassiana, as the active ingredient were formulated with nanocellulose was added as an inert ingredient to which helped to deliver the active ingredients on controlling the target pest, and enhance the utility ability of the product fungi to control termites. The mortality of these termites successively entomopathogenic fungi was the main cause of death. The higher concentrations being associated with of nanocellulose used affect increased the number of termites mortality. M. anisopliae paired with 60% nanocellulose concentrate was the best percentage for yielded the greatest C. curvignathus and C. cynocephalus termite control. In the field testing, M. anisopliae provided better, it showed the finest result of termite control rather than B. bassiana and T. harzianum. The results of the research indicate that entomopathogenic fungi can be used for Pest Control Management as the subterranean termite and drywood termite control.

키워드

과제정보

We express our gratitude to the funder, the Ministry of Education and Culture, Research Technology Directorate and Community Service through Research and Community Service, Indonesia Research Grant colla- boration with the contract number of DPA023.17.2. 690645/2023.10. REVISI 2.

참고문헌

  1. Achmad, D.I., Ivansyah, O., Mutaqin, Z. 2021. Application of termite bait with variation of methyle eugenol, pineapple peel extract and bintaro liquid smoke. International Journal of Environmental & Agriculture Research 7(3): 58-62. 
  2. Aker, O., Eser, F., Yildirim, C. 2023. The laboratory evaluation of insecticidal activities and phytochemical analysis of Marrubium astracanicum Jacq. subsp. astracanicum Jacq. against Callosobruchus chinensis (L.) and Callosobruchus maculatus (Fabricius 1775). South African Journal of Botany 160: 667-672. 
  3. Al-Harbi, N.A., Al Attar, N.M., Hikal, D.M., Mohamed, S.E., Latef, A.A.H.A., Ibrahim, A.A., Abdein, M.A. 2021. Evaluation of insecticidal effects of plants essential oils extracted from basil, black seeds and lavender against Sitophilus oryzae. Plants 10(5): 829. 
  4. Altinok, H.H., Altinok, M.A., Koca, A.S. 2019. Modes of action of entomopathogenic fungi. Current Trends in Natural Sciences 8(16): 117-124. 
  5. Anggrawati, P.S., Ramadhania, Z.M. 2016. Kandungan senyawa kimia dan bioaktivitas dari jambu air (Syzygium aqueum Burn. f. Alston). Farmaka 14(2): 331-344. 
  6. Arinana, A., Rahman, M.M., Silaban, R.E.G., Himmi, S.K., Nandika, D. 2022. Preference of subterranean termites among community timber species in Bogor, Indonesia. Journal of the Korean Wood Science and Technology 50(6): 458-474. 
  7. Arinana, A., Rauf, D., Nandika, D., Harahap, I., Sumertajaya, I.M. 2019. Model prediksi risiko kelas serangan rayap tanah di Provinsi DKI Jakarta berbasis spesies, tanah, dan iklim. In: Bandung, Indonesia, Prosiding Seminar Nasional PEI Cabang Bandung, pp. 170-178. 
  8. Ayilara, M.S., Adeleke, B.S., Akinola, S.A., Fayose, C.A., Adeyemi, U.T., Gbadegesin, L.A., Omole, R.K., Johnson, R.M., Uthman, Q.O., Babalola, O.O. 2023. Biopesticides as a promising alternative to synthetic pesticides: A case for microbial pesticides, phytopesticides, and nanobiopesticides. Frontiers in Microbiology 14: 1040901. 
  9. Calleri, D.V.II., Rosengaus, R.B., Traniello, J.F.A. 2010. Disease resistance in the drywood termite, Incisitermes schwarzi: Does nesting ecology affect immunocompetence? Journal of Insect Science 10(1): 44. 
  10. Dasenaki, I., Betsi, P.C., Raptopoulos, D., Konstantopoulou, M. 2022. Insecticidal effect of Pistacia lentiscus (Anacardiaceae) metabolites against Lobesia botrana (Lepidoptera: Tortricidae). Agronomy 12(4): 755. 
  11. Fernandes, M.J.G., Pereira, R.B., Pereira, D.M., Fortes, A.G., Castanheira, E.M.S., Goncalves, M.S.T. 2020. New eugenol derivatives with enhanced insecticidal activity. International Journal of Molecular Sciences 21(23): 9257. 
  12. Fulton, M.H., Key, P.B., DeLorenzo, M.E. 2014. Insecticide Toxicity in Fish. In: Organic Chemical Toxicology of Fishes, Ed. by Tierney, K.B., Farrell, A.P., and Brauner, C.J. Elsevier, Amsterdam, The Netherlands.
  13. Hikal, W.M., Baeshen, R.S., Said-Al Ahl, H.A.H. 2017. Botanical insecticide as simple extractives for pest control. Cogent Biology 3(1): 1404274. 
  14. Hussain, P.R., Meena, R.S., Dar, M.A., Wani, A.M. 2010. Carboxymethyl cellulose coating and low-dose gamma irradiation improves storage quality and shelf life of pear (Pyrus communis L., Cv. Bartlett/William). Journal of Food Science 75(9): M586-M596. 
  15. Hussain, S., Farooq, M., Aslam, M.N., Zada, N. 2023. Insecticidal potential of eco-friendly mycoinsecticides for the management of fall armyworm (Spodoptera frugiperda) under in vitro condition. Bulgarian Journal of Agricultural Science 29(1): 124-130. 
  16. Indrayani, Y., Fatmawati, D. 2019. Effect of bait density on consumption rates and mortality of subterranean termite Coptotermes curvignathus. Berkala Penelitian Hayati Journal of Biological Researches 24(2): 90-94. 
  17. Japanese Industrial Standards [JIS]. 2010. Test Methods for Determining the Effectiveness of Wood Preservatives and Their Performance Requirements. JIS K 1571. Japanese Industrial Standards, Tokyo, Japan. 
  18. Japanese Industrial Standards [JIS]. 2016. Performance Improvement of Management Systems: Guidelines for Daily Management. JIS Q 9026. Japanese Industrial Standards, Tokyo, Japan. 
  19. Kutana, A.N., Muin, M, Arif, A. 2018. Produksi umpan rayap dari limbah bahan organik dan efektivitasnya dalam pengendalian serangan Coptotermes sp. Perennial Journal 14(2): 66-70. 
  20. Lee, D., Kim, Y.K., Kim, Y.S., Kim, T.J. 2019. Elizabethkingia miricola Bm10, a new symbiotic bacterium isolated from the hindgut of the termite Reticulitermes speratus Kmt001. Journal of the Korean Wood Science and Technology 47(6): 692-699. 
  21. Lee, J.M., Kim, Y.H., Hong, J.Y., Lim, B., Park, J.H. 2020. Exploration of preservatives that inhibit wood feeding by inhibiting termite intestinal enzyme activity. Journal of the Korean Wood Science and Technology 48(3): 376-392. 
  22. Maw, M.G., House, H.L. 2012. On capric acid and potassium capricate as mosquito larvicides in laboratory and field. The Canadian Entomologist 103(10): 1435-1440. 
  23. Neves, P.M.O.J., Alves, S.B. 2000. Grooming capacity inhibition in Cornitermes cumulans (Kollar) (Isoptera: Termitidae) inoculated with entomopathogenic fungi and treated with imidacloprid. Anais da Sociedade Entomologica do Brasil 29(3): 537-545. 
  24. Niroumand, M.C., Farzkenari, M.H., Razkenari E.K., Amin, G., Khanavi, M., Akbarzadeh, T., ShamsArdekani, M.R.. 2016. An evidence-based review on medical plants used as insecticide and insect repellent in traditional Iranian medicine. Iranian Red Crescent Medical Journal 18(2): e22361. 
  25. Oramahi, H.A., Yoshimura, T. 2013. Antifungal and antitermitic activities of wood vinegar from Vitex pubescens Vahl. Journal of Wood Science 59(4): 344-350. 
  26. Pathak, V.M., Verma, V.K., Rawat, B.S., Kaur, B., Babu, N., Sharma, A., Dewali, S., Yadav, M, Kumari, R., Singh, S., Mohapatra, A., Pandey, V., Rana, N., Cunill, J.M. 2022. Current status of pesticide effects on environment, human health and it's eco-friendly management as bioremediation: A comprehensive review. Frontiers in Microbiology 13: 962619. 
  27. Popat, A., Liu, J., Hu, Q., Kennedy, M., Peters, B., Lu, G.Q.M., Qiao, S.Z. 2012. Adsorption and release of biocides with mesoporous silica nanoparticles. Nanoscale 4(3): 970-975. 
  28. Romano, A.D., Acda, M.N. 2017. Feeding preference of the drywood termite Cryptotermes cynocephalus (Kalotermitidae) against industrial tree plantation species in the Philippines. Journal of Asia-Pacific Entomology 20(4): 1161-1164. 
  29. Saravanan, G. 2022. Plants and phytochemical activity as botanical pesticides for sustainable agricultural crop production in India-MiniReview. Journal of Agriculture and Food Research 9: 100345. 
  30. Shackleton, R., Kenaley, S.C., Hentcke, P., Stern, D., Fleming, T. 2015. Algae to Energy: Using and Re-using a Hemocytometer to Count Algae Cells. Boyce Thomson Institute, Ithaca, NY, USA. 
  31. Singh, B.K., Pandey, J.G., Gupta, R.P., Verghese, A. 2011. Efficacy of entomopathogenic fungi for the management of onion thrips, Thrips tabaci Lind. Pest Management in Horticultural Ecosystems 17(2): 92-98. 
  32. Skinner, M., Parker, B.L., Kim, J.S. 2014. Role of Entomopathogenic Fungi in Integrated Pest Management. In: Integrated Pest Management: Current Concepts and Ecological Perspective, Ed. by Abrol, D.P. Elsevier, Amsterdam, The Netherlands. 
  33. Sotelo-Leyva, C., Toledo-Hernandez, E., Navarro-Tito, N., Aguilar-Marcelino, L., Hernandez-Salinas, G., Salinas-Sanchez, D.O., Pena-Chora, G. 2022. Chemical composition and aphidicidal properties of castor-bean leaves against Rhopalosiphum maidis and Sipha flava (Hemiptera: Aphididae). Chilean Journal of Agricultural Research 83(2): 228-235. 
  34. Staples, J.A., Milner, R.J. 2000. A laboratory evaluation of the repellency of Metarhizium anisopliae conidia to Coptotermes lacteus (Isoptera: Rhinotermitidae). Sociobiology 36(1): 133-148. 
  35. Su, N.Y., Ban, P.M., Schreffrahn, R.H. 1991. Suppression of foraging populations of the formosan subterranean termite (Isoptera: Rhinotermitidae) by field applications of a slow-acting toxicant bait. Journal of Economic Entomology 84(5): 1525-1531. 
  36. Subekti, N., Fadhila, A. 2023. Termite identification attacks on buildings. Biosaintifika 15(2): 255-261. 
  37. Subekti, N., Widiyaningrum, P., Yoshimura, T., Fibriana, F. 2018. The strength and termite resistance characteristics of fiberboards produced from the renewable bamboo biomass. Wood Research 63(3): 409-418. 
  38. Wu, J., Du, C., Zhang, J., Yang, B., Cuthbertson, A.G.S., Ali, S. 2021. Synthesis of Metarhizium anisopliaechitosan nanoparticles and their pathogenicity against Plutella xylostella (Linnaeus). Microorganisms 10(1): 1. 
  39. Zhang, S., Blore, K., Xue, R.D., Qualls, W.A., Cermak, S., Zhu, J.W. 2021. Larvicididal activity of natural repellents against the dengue vector, Aedes aegypti. Journal of the American Mosquito Control Associ- ation 36(4): 227-232. 
  40. Zhang, X.C., Jiang, M., Zang, Y.N., Zhao, H.Z., Liu, C.X., Liu, B.R., Xue, H., Schal, C., Lu, X.M., Zhao, D.Q., Zhang, X.X., Zhang, F. 2022. Metarhizium anisopliae is a valuable grist for biocontrol in beta-cypermethrin-resistant Blattella germanica (L.). Pest Management Science 78(4): 1508-1518.