DOI QR코드

DOI QR Code

A Scientific Analytical on the Ancient Shipwrecks Degradation Products Excavated from Underwater: Focused on Sulfur and Iron Degradation Products

  • Ji-Seon SONG (Conservation & Collection Management Division, National Research Institute of Maritime Heritage (NRIMH)) ;
  • Yong-Hee YOON (Conservation & Collection Management Division, National Research Institute of Maritime Heritage (NRIMH)) ;
  • Chang-Hyun PARK (Conservation & Collection Management Division, National Research Institute of Maritime Heritage (NRIMH))
  • Received : 2024.01.29
  • Accepted : 2024.03.06
  • Published : 2024.05.25

Abstract

In this study, samples were collected from various ancient wooden shipwrecks, including the Shinan shipwreck and Jindo shipwreck that used iron nails, the Yeongheungdo shipwreck carrying iron artifacts, as well as the Sibidongpado shipwreck and Wando shipwreck where degradation products were not observed, all of which were salvaged by the National Research Institute of Maritime Heritage. The aim was to analyze the characteristics of degradation products generated by iron (Fe) within the salvaged wooden shipwreck materials and establish fundamental data on degradation products in waterlogged archaeological wood. The analysis revealed that sulfur (S) is generally accumulated in wood obtained from marine environments. It was observed that the content of inorganic substances such as iron and sulfur was significantly higher in the Shinan shipwreck, Jindo shipwreck, and Yeongheungdo shipwreck compared to Sibidongpado shipwreck and Wando shipwreck, which used wooden nails. This indicates that the presence of iron affects the accumulation of degradation products and suggests that iron is a factor in the corrosion of wood. Furthermore, crystallin compounds were observed within the cell walls, and higher concentrations of iron and sulfur were found in the resin ducts, rays, and radial tissues. This suggests that during desalination and consolidation treatments, warm water or polyethylene glycol (PEG) may move degradation factors into resincanals, rays, radial tissues, etc.

Keywords

References

  1. Almkvist, G., Persson, I. 2006. Extraction of iron compounds from wood from the Vasa. Holzforschung 60(6): 678-684.
  2. Almkvist, G., Persson, I. 2008. Fenton-induced degradation of polyethylene glycol and oak holocellulose. A model experiment in comparison to changes observed in conserved waterlogged wood. Holzforschung 62(6): 704-708.
  3. Almkvist, G., Persson, I. 2011. Distribution of iron and sulfur and their speciation in relation to degradation processes in wood from the Swedish warship Vasa. New Journal of Chemistry 35(7): 1491-1502.
  4. Cha, M.Y., Lim, J.W., Jeong, Y.J., Kim, J.S. 2022. Bacterial degradation of compression wood tracheids in waterlogged archaeological wood. In: Daegu, Korea, 2022 Proceedings of the Korean Wood Science and Technology, p. 32.
  5. Cultural Properties Administration. 1985. The Undersea Antiques Wando. Cultural Properties Administration, Mokpo, Korea.
  6. Fors, Y., Grudd, H., Rindby, A., Jalilehvand, F., Sandstrom, M., Cato, I., Bornmalm, L. 2014. Sulfur and iron accumulation in three marine-archaeological shipwrecks in the Baltic Sea: The Ghost, the Crown and the Sword. Scientific Reports 4(1): 4222.
  7. Fors, Y., Sandstrom, M. 2006. Sulfur and iron in shipwrecks cause conservation concerns. Chemical Society Reviews 35(5): 399-415.
  8. Howie, F. 1978. Storage environment and the conservation of geological material. The Conservator 2(1): 13-19.
  9. Hwang, K.C., Min, J.E., Park, I.S., Park, J.W. 2008. Trichloroethylene removal using sulfate reducing bacteria and ferric iron. Journal of Soil and Groundwater Environment 13(1): 24-31.
  10. Kim, J.S., Kim, Y.S. 2020. Micromorphological characteristics of decayed rosewood found in Shinan shipwreck. In: Online Conference, 2020 Proceedings of the Korean Wood Science and Technology, p. 16.
  11. Kim, Y.H. 1987. Preservation and restoration of Ancient shipwrecks. Conservation Studies 8(7): 123-148.
  12. Kim, Y.S., Bang, J.W., Kim, I.J., Choi, K.N. 1990. Chemical composition of archaeological woods submerged in the seawater. Journal of the Korean Wood Science and Technology 18(2): 3-7.
  13. Kilic, A.G., Kilic, N., Arnold, D.C. 2023. Analyses of sulfur and iron in waterlogged archaeological wood: The case of polyethylene-glycol-treated Yenikapi 12 shipwreck. Forests 14(3): 530-542.
  14. Le Gall, J., Xavier, A.V. 1996. Anaerobes response to oxygen: The sulfate-reducing bacteria. Anaerobe 2(1): 1-9.
  15. Lee, K.H., Kim, S.C., Park, W.K. 2011. Humidity-controlled drying of PEG-treated waterlogged woods. Journal of Conservation Science 27(1): 91-100.
  16. Lee, P.W. 1997. Properties and Uses of Korean Wood. I. Wood Structure and Properties and Uses. Seoul National University Press, Seoul, Korea.
  17. Lim, J.W., Kim, J.S. 2022. Chemical characterization and microbial community analysis of waterlogged archeological wood. In: Chuncheon, Korea, 2022 Proceedings of the Korean Wood Science and Technology, p. 3.
  18. Lim, J.W., Kim, J.S. 2023. Microbial degradation and its related microbial community analysis in waterlogged archeological wood excavated in Gyeongju area. In: Jeonju, Korea, 2023 Proceedings of the Korean Wood Science and Technology, p. 10.
  19. Menert, A., Paalme, V., Juhkam, J., Vilu, R. 2004. Characterization of sulfate-reducing bacteria in yeast industry waste by microcalorimetry and PCR amplification. Thermochimica Acta 420(1-2): 89-98.
  20. Monachon, M., Albelda-Berenguer, M., Joseph, E. 2019. Biological oxidation of iron sulfides. Advances in Applied Microbiology 107(1): 1-27.
  21. Monachon, M., Albelda-Berenguer, M., Pele, C., Cornet, E., Guilminot, E., Remazeilles, C., Joseph, E. 2020. Characterization of model samples simulating degradation processes induced by iron and sulfur species on waterlogged wood. Microchemical Journal 155: 104756.
  22. Nam, T.G., Kim, H.S. 2021. A fundamental study of the silla shield through the analysis of the shape, dating, and species identification of wooden shields excavated from the ruins of Wolseong Moat in Gyeongju. Journal of the Korean Wood Science and Technology 49(2): 154-168. https://doi.org/10.5658/WOOD.2021.49.2.154
  23. National Research Institute of Maritime Cultural Heritage [NRIMCH]. 2010. Traditional Shipbuilding Technical Report 2: Celadon Carrying Ship of the Goryeo Dynasty. NRIMCH, Mokpo, Korea.
  24. National Research Institute of Maritime Cultural Heritage [NRIMCH]. 2013. Conservation Manual of Marine Archaeological Objects in Korea. NRIMCH, Mokpo, Korea.
  25. National Research Institute of Maritime Cultural Heritage [NRIMCH]. 2022. Shinan Shipwreck Conservation Project Comprehensive Report. NRIMCH, Mokpo, Korea.
  26. Oh, J.U., Lee, U.C., Jo, S.Y., Park, J.H., Lee, K.H., Kim, S.C. 2022. Scientific analysis and conservation of neolithic era large waterlogged woods excavated from Suyeong-ri site, Hwaseong, Korea. In: Daegu, Korea, 2022 Proceedings of the Korean Wood Science and Technology, p. 12.
  27. Park, C., Jo, S., Seo, Y., Lee, K., Lee, E., Kim, S. 2021. Conservation for waterlogged wood excavated from Bongdam Suyeong-ri, Hwaseong, Korea. In: Gyeongju, Korea, 2021 Proceedings of the Korean Wood Science and Technology, p. 64.
  28. Pecoraro, E., Pele-Meziani, C., Macchioni, N., Lemoine, G., Guilminot, E., Shen, D., Pizzo, B. 2023. The removal of iron from waterlogged archaeological wood: Efficacy and effects on the room temperature wood properties. Wood Material Science & Engineering 18(2): 672-689.
  29. Pele-Meziani, C., Macchioni, N., Sozzi, L., Guilminot, E., Lemoine, G., Pizzo, B., Mevellec, J.Y., Pecoraro, E., Monachon, M. 2023. Assessment of various iron extraction treatments on waterlogged archaeological oak. Forests 14(9): 1834.
  30. Ramel, F., Brasseur, G., Pieulle, L., Valette, O., Hirschler-Rea, A., Laure Fardeau, M., Dolla, A. 2015. Growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough under continuous low oxygen concentration sparging: Impact of the membrane-bound oxygen reductases. PLOS ONE 10(4): e0123455.
  31. Sandstrom, M., Fors, Y., Jalilehvand, F., Damian, E., Gelius, U. 2004. Analyses of sulfur and iron in marine-archaeological wood. In: Copenhagen, Denmark, Proceedings of the 9th ICOM Group on Wet Organic Archaeological Materials Conference, pp. 181-199.
  32. Sandstrom, M., Jalilehvand, F., Persson, I., Gelius, U., Frank, P., Hall-Roth, I. 2002. Deterioration of the seventeenth-century warship Vasa by internal formation of sulphuric acid. Nature 415(6874): 893-897.
  33. Santos, E.C.D., Silva, J.C.M., Duarte, H.A. 2016. Pyrite oxidation mechanism by oxygen in aqueous medium. The Journal of Physical Chemistry 120(5): 2760-2768.
  34. Scotto, V., Di Cintio, R., Marcenaro, G. 1985. The influence of marine aerobic on microbial film on stainless steel corrosion behaviour. Corrosion Science 25(3): 185-194.
  35. Seo, S., Kim, T., Lee, J.W. 2020. Chemical properties of artificially buried wood in an intertidal zone during the deterioration period. Journal of the Korean Wood Science and Technology 48(6): 896-906.
  36. Sung, E.H., Han, J.S., Kim, C.G. 2008. Metal corrosion mechanism by sulfate-reducing and iron-oxidizing bacteria in saline system and its optimal inactivation. Journal of Korean Society of Environmental Engineers 30(8): 798-807.
  37. Taglieri, G., Daniele, V., Macera, L., Schweins, R., Zorzi, S., Capron, M., Chaumat, G., Mondelli, C. 2020. Sustainable nanotechnologies for curative and preventive wood deacidification treatments: An eco-friendly and innovative approach. Nanomaterials 10(9): 1744.
  38. Thiel, J., Byrne, J.M., Kappler, A., Schink, B., Pester, M. 2019. Pyrite formation from FeS and H2S is mediated through microbial redox activity. Proceedings of the National Academy of Sciences 116(14): 6897-6902.
  39. Wetherall, K.M., Moss, R.M., Jones, A.M., Smith, A.D., Skinner, T., Pickup, D.M., Goatham, S.W., Chadwick, A.V., Newport, R.J. 2008. Sulfur and iron speciation in recently recovered timbers of the Mary Rose revealed via X-ray absorption spectroscopy. Journal of Archaeological Science 35(5): 1317-1328.
  40. Xu, C., Zhang, Y., Cheng, G. 2007. Localized corrosion behavior of 316L stainless steel in the presence of sulfate-reducing and iron-oxidizing bacteria. Materials Science and Engineering A 443(1-2): 235-241.
  41. Yoon, Y.H., Kim, Y.J., Mitsutani, T., Moon, W.S., Park, W.K. 2011. Species identification and tree-ring dating of wooded boxes excavated from Shinan shipwreck, Korea. In: Gwangju, Korea, 2011 Proceedings of the Korean Wood Science and Technology, pp. 4-5.