DOI QR코드

DOI QR Code

Migration of fine granular materials into overlying layers using a modified large-scale triaxial system

  • Tan Manh Do (Department of Civil Engineering, University of Mining and Geology) ;
  • Jan Laue (Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology) ;
  • Hans Mattsson (Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology) ;
  • Qi Jia (Department of Civil, Environmental and Natural Resources Engineering, Lulea University of Technology)
  • Received : 2023.04.20
  • Accepted : 2024.04.25
  • Published : 2024.05.25

Abstract

The primary goal of this study is to evaluate the migration of fine granular materials into overlying layers under cyclic loading using a modified large-scale triaxial system as a physical model test. Samples prepared for the modified large-scale triaxial system comprised a 60 mm thick gravel layer overlying a 120 mm thick subgrade layer, which could be either tailings or railway sand. A quantitative analysis of the migration of fine granular materials was based on the mass percentage and grain size of migrated materials collected in the gravel. In addition, the cyclic characteristics, i.e., accumulated axial strain and excess pore water pressure, were evaluated. As a result, the total migration rate of the railway sand sample was found to be small. However, the total migration rate of the sample containing tailings in the subgrade layer was much higher than that of the railway sand sample. In addition, the migration analysis revealed that finer tailings particles tended to be migrated into the upper gravel layer easier than coarser tailings particles under cyclic loading. This could be involved in significant increases in excess pore water pressure at the last cycles of the physical model test.

Keywords

Acknowledgement

This research was funded by the Swedish transport administration (Trafikverket), the Swedish joint research program for road and railway geotechnology Bransch-samverkan i grunden (BIG), Swedish Hydropower Centre (SVC), and Lulea University of Technology. The research presented in this paper was carried out as a part of the Swedish Hydropower Center (Svenskt Vattenkraftscentrum, SVC). SVC has been established by the Swedish Energy Agency, Energiforsk, and Svenska Kraftnat, together with Lulea University of Technology, KTH Royal Institute of Technology, Chalmers University of Technology, Uppsala University, and Lund University. The participating companies and industry associations are: Andritz Hydro, Boliden, Fortum Sweden, Holmen Energi, Jamtkraft, Karlstads Energi, LKAB, Malarenergi, Norconsult, Rainpower, Skelleftea Kraft, Sollefteaforsens, Statkraft Sverige, Sweco Sverige, Tekniska verken i Linkoping, Uniper, Vattenfall R&D, Vattenfall Vattenkraft, Voith Hydro, WSP Sverige, Zink-gruvan, and A F Industry.

References

  1. Alobaidi, I. and Hoare, D. (1994), "Factors affecting the pumping of fines at the subgrade subbase interface of highway pavements: A laboratory study", Geosynthetics Int., 1(2), 221-259. https://doi.org/10.1680/gein.1.0010.
  2. Alobaidi, I. and Hoare, D. (1998), "The role of geotextile reinforcement in the control of pumping at the subgrade-subbase interface of highway pavements", Geosynthetics Int., 5(6), 619-636. https://doi.org/10.1680/gein.6.0152.
  3. Alobaidi, I. and Hoare, D.J. (1996), "The development of pore water pressure at the subgrade-subbase interface of a highway pavement and its effect on pumping of fines", Geotext. Geomembranes, 14(2), 111-135. https://doi.org/10.1016/0266-1144(96)84940-5.
  4. Alobaidi, I. and Hoare, D.J. (1999), "Mechanisms of pumping at the subgrade-subbase interface of highway pavements", Geosynthetics Int., 6(4), 241-259. https://doi.org/10.1680/gein.6.0152.
  5. Aw, E.S. (2007), "Low cost monitoring system to diagnose problematic rail bed: case study of mud pumping site", Doctoral dissertation, Massachusetts Institute of Technology.
  6. Ayres, D. (1986), "Geotextiles or geomembranes in track? British railways' experience", Geotext. Geomembranes, 3(2-3), 129-142 https://doi.org/10.1016/0266-1144(86)90004-X.
  7. Boomintahan, S. and Srinivasan, G. (1988), "Laboratory studies on mud-pumping into ballast under repetitive rail loading", Indian Geotech. J., 18(1), 31-47.
  8. Cui, Y. J., Duong, T.V., Tang, A.M., Dupla, J.C., Calon, N. and Robinet, A. (2013), "Investigation of the hydro-mechanical behaviour of fouled ballast", J. Zhejiang Univ. Sci. A, 14(4), 244-255. https://doi.org/10.1631/jzus.A1200337.
  9. Ding, Y., Jia, Y., Wang, X., Zhang, J., Luo, H., Zhang, Y. and Chen, X. (2022), "The characteristics of subgrade mud pumping under various water level conditions", Geomech. Eng., 30(2), 201-210. https://doi.org/10.12989/gae.2022.30.2.201.
  10. Do, T. M., Laue, J., Mattson, H. and Jia, Q. (2022), "Tailings fluidization under cyclic triaxial loading-a laboratory study", Geomech. Eng., 29(5), 497-508. https://doi.org/10.12989/gae.2022.29.5.497.
  11. Do, T.M. (2021), "Excess pore water pressure generation in fine granular materials under cyclic loading-A laboratory study", Licentiate thesis, Lulea University of Technology.
  12. Do, T.M., Laue, J., Mattsson, H. and Jia, Q. (2023), "Excess pore water pressure generation in fine granular materials under undrained cyclic triaxial loading", Int. J. Geo-Eng., 14(1), 8. https://doi.org/10.1186/s40703-023-00185-y.
  13. Duong, T.V., Cui, Y.J., Tang, A.M., Dupla, J.C., Canou, J., Calon, N. and Robinet, A. (2014), "Investigating the mud pumping and interlayer creation phenomena in railway sub-structure", Eng. Geol., 171, 45-58. https://doi.org/10.1016/j.enggeo.2013.12.016.
  14. Duong, T.V., Tang, A.M., Cui, Y.J., Trinh, V.N., Dupla, J.C., Calon, N., Canou, J. and Robinet, A. (2013), "Effects of fines and water contents on the mechanical behavior of interlayer soil in ancient railway sub-structure", Soils Found., 53(6), 868-878. https://doi.org/10.1016/j.sandf.2013.10.006.
  15. Ghataora, G., Burns, B., Burrow, M. and Evdorides, H. (2006), "Development of an index test for assessing anti-pumping materials in railway track foundations", Proceedings of the 1st International Conference on Railway Foundaitons.
  16. Gidel, G., Hornych, P., Breysse, D. and Denis, A. (2001), "A new approach for investigating the permanent deformation behaviour of unbound granular material using the repeated loading triaxial apparatus", Bulletin des laboratoires des Ponts et Chaussees (233).
  17. Henry, K.S., Cole, D.M. and Durell, G.D. (2013), "Mixing in an aggregate/fine-grained soil system subjected to cyclic loading with a geotextile separator", Sound geotechnical research to practice: Honoring Robert D. Holtz II, 306-317. https://doi.org/10.1061/9780784412770.020.
  18. Indraratna, B., Rujikiatkamjorn, C. and Ni, J. (2011), "Cyclic behaviour of soft soil subgrade improved by prefabricated vertical drains", In Deformation Characteristics of Geomaterials, 559-564.
  19. Indraratna, B., Singh, M., Nguyen, T.T., Leroueil, S., Abeywickrama, A., Kelly, R. and Neville, T. (2020), "Laboratory study on subgrade fluidization under undrained cyclic triaxial loading", Can. Geotech. J., 57(11), 1767-1779. https://doi.org/10.1139/cgj-2019-0350.
  20. Kermani, B., Stoffels, S.M., Xiao, M. and Qiu, T. (2018), "Experimental simulation and quantification of migration of subgrade soil into subbase under rigid pavement using model mobile load simulator", J. Transport. Eng. Part B: Pavements, 144(4), 04018049. https://doi.org/10.1061/JPEODX.0000078.
  21. Kermani, B., Xiao, M., Stoffels, S.M. and Qiu, T. (2019), "Measuring the migration of subgrade fine particles into subbase using scaled accelerated flexible pavement testing - a laboratory study", Road Mater. Pavement Design, 20(1), 36-57. https://doi.org/10.1080/14680629.2017.1374995.
  22. Knutsson, R. and Laue, J. (2016), "Numerical analysis of Aitik pier S1 subjected to dynamic loads", Lulea University of Technology.", Technical report, Lulea University of Technology.
  23. Milne, D., Le Pen, L., Thompson, D. and Powrie, W. (2017), "Properties of train load frequencies and their applications", J. Sound Vib., 397, 123-140. https://doi.org/10.1016/j.jsv.2017.03.006.
  24. Mittal, S. and Meyase, K. (2012), "Study for improvement of grounds subjected to cyclic loads", Geomech. Eng., 4(3), 191-208. https://doi.org/10.12989/gae.2012.4.3.191.
  25. Powrie, W., Yang, L. and Clayton, C.R. (2007), "Stress changes in the ground below ballasted railway track during train passage", Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 221(2), 247-262. https://doi.org/10.1243/0954409JRRT95.
  26. Raymond, G. (1999), "Railway rehabilitation geotextiles." Geotextiles and geomembranes, 17(4), 213-230.
  27. Sundvall, M. (2005). "Migration of fine particles to the ballast layer", Master thesis, Lulea University of Technology.
  28. Sussmann, T.R., Maser, K.R., Kutrubes, D., Heyns, F. and Selig, E.T. (2001), "Development of ground penetrating radar for railway infrastructure condition detection", Proceedings of the 14th EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems, European Association of Geoscientists & Engineers, cp-192-00096. https://doi.org/10.4133/1.2922936.
  29. Takatoshi, I. (1997), "Measure for the stabilization of railway earth structure", Japan Railway Technical Service, 290.
  30. Tang, L.S., Chen, H.K., Sun, Y.L., Zhang, Q.H. and Liao, H.R. (2018), "Traffic-load-induced dynamic stress accumulation in subgrade and subsoil using small scale model tests", Geomech. Eng., 16(2), 113-124. https://doi.org/10.12989/gae.2018.16.2.113.
  31. Trinh, V.N., Tang, A.M., Cui, Y.J., Dupla, J.C., Canou, J., Calon, N., Lambert, L., Robinet, A. and Schoen, O. (2012), "Mechanical characterisation of the fouled ballast in ancient railway track substructure by large-scale triaxial tests", Soils Found., 52(3), 511-523. https://doi.org/10.1016/j.sandf.2012.05.009.
  32. Wang, T., Luo, Q., Liu, M., Wang, L. and Qi, W. (2020), "Physical modeling of train-induced mud pumping in substructure beneath ballastless slab track", Transport.Geotech., 23, 100332. https://doi.org/10.1016/j.trgeo.2020.100332.