DOI QR코드

DOI QR Code

Application and evaluation for effluent water quality prediction using artificial intelligence model

방류수질 예측을 위한 AI 모델 적용 및 평가

  • Received : 2023.09.01
  • Accepted : 2023.12.20
  • Published : 2024.02.15

Abstract

Occurrence of process environment changes, such as influent load variances and process condition changes, can reduce treatment efficiency, increasing effluent water quality. In order to prevent exceeding effluent standards, it is necessary to manage effluent water quality based on process operation data including influent and process condition before exceeding occur. Accordingly, the development of the effluent water quality prediction system and the application of technology to wastewater treatment processes are getting attention. Therefore, in this study, through the multi-channel measuring instruments in the bio-reactor and smart multi-item water quality sensors (location in bio-reactor influent/effluent) were installed in The Seonam water recycling center #2 treatment plant series 3, it was collected water quality data centering around COD, T-N. Using the collected data, the artificial intelligence-based effluent quality prediction model was developed, and relative errors were compared with effluent TMS measurement data. Through relative error comparison, the applicability of the artificial intelligence-based effluent water quality prediction model in wastewater treatment process was reviewed.

Keywords

References

  1. Adnan, R.M., Petroselli, A., Heddam, S., Santos, C.A.G., and Kisi, O. (2021). Comparison of different methodologies for rainfall-runoff modeling: machine learning vs conceptual approach, Nat. Hazards, 105, 2987-3011.  https://doi.org/10.1007/s11069-020-04438-2
  2. Ahmed, A.N., Othman, F.B., Afan, H.A., Ibrahim, R.K., Fai, C.M., Hossain, M.S., Ehteram, M. and Elshafie, A. (2019). Machine learning methods for better water quality prediction, J. Hydrol., 578, 124084. 
  3. BioWin, https://envirosim.com/products (August 23, 2023). 
  4. GPS-X, https://www.hydromantis.com/GPSX-innovative.html (August 23, 2023). 
  5. Haghiabi, A.H., Nasrolahi, A.H., and Parsaie, A. (2018). Water quality prediction using machine learning methods, Water Qual. Res. J., 53(1), 3-13. 
  6. Hamed, M.M., Khalafallah, M.G., and Hassanien, E.A. (2004). Prediction of wastewater treatment plant performance using artificial neural networks, Environ. Model. Softw., 19(10), 919-928.  https://doi.org/10.1016/j.envsoft.2003.10.005
  7. Henze, M., Gujer, W., Mino, T., and Van Loosedrecht, M. (2006). Activated sludge models ASM1, ASM2, ASM2d and ASM3, IWA Publishing, London. 
  8. Hong, Y.S.T., Rosen, M.R., and Bhamidimarri, R. (2003). Analysis of a municipal wastewater treatment plant using a neural network-based pattern analysis, Water Res., 37(7), 1608-1618.  https://doi.org/10.1016/S0043-1354(02)00494-3
  9. Jun, H.D. (2021). Developments of a real-time simulation model based on the cyber physical system and a decision support system for management and maintenance for urban water resources, J. Korean Soc. Environ. Eng., 108-108. 
  10. Mjalli, F.S., Al-Asheh, S., and Alfadala, H.E. (2007). Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance, J. Environ. Manag., 83(3), 329-338.  https://doi.org/10.1016/j.jenvman.2006.03.004
  11. Mosavi, A., Ozturk, P., and Chau, K.W. (2018). Flood prediction using machine learning models: Literature review, Water, 10(11), 1536. 
  12. MasFlow, http://www.unu-inc.com/massflow (August 23, 2023). 
  13. Ribeiro, D., Sanfins, A., and Belo, O. (2013). "Wastewater treatment plant performance prediction with support vector machines, In Advances in Data Mining. Applications and Theoretical Aspects": 13th Industrial Conference, ICDM 2013, July 16-21, 2013. Springer Berlin Heidelberg. New York, USA. 
  14. Usman, S., Kim, J.R., Pak, G.J., Rhee, G.H., and You., K.T. (2022). Investigating Machine Learning Applications for Effective Real-Time Water Quality Parameter Monitoring in Full-Scale Wastewater Treatment Plants, Water 14, 19: 3147. Switzerland. 
  15. Water World, https://www.waterworld.com/home/article/16202870/spanish-wastewater-smart-plant-cuts-energy-sludge-and-chemical-use (August 23, 2023). 
  16. Yun, Z.W. Water Journal, http://www.waterjournal.co.kr/news/articleView.html?idxno=40300 (August 21, 2023). 
  17. You, K.T. KEITI (2020). Development of optimal and smart energy management solution based on IoT for wastewater treatment plant, 2019002210001. 
  18. You, K.T. Ministry of Environment. (2021). Machine learning-based water treatment process diagnosis and integrated operation system development final report, 2018002110001.