Acknowledgement
I thank all the pedagogical and administrative staff of Sidi Mohamed Ben Abdellah University, 30040 Fez, Morocco for the pedagogical atmosphere they brought to the research.
References
- Abdikarimov, R., Amabili, M., Vatin, N.I. and Khodzhaev, D. (2021), "Dynamic stability of orthotropic viscoelastic rectangular plate of an arbitrarily varying thickness", Appl. Sci., 11(13), 6029. https://doi.org/10.3390/app11136029.
- Abramovich, H. (2017), Stability and Vibrations of Thin-Walled Composite Structures, Woodhead Publishing.
- Adhikari, B., Dash, P. and Singh, B.N. (2020), "Buckling analysis of porous FGM sandwich plates under various types nonuniform edge compression based on higher order shear deformation theory", Compos. Struct., 251, 112597. https://doi.org/10.1016/j.compstruct.2020.112597.
- Adim, B., Daouadji, T.H., Abbes, B. and Rabahi, A. (2016), "Buckling and free vibration analysis of laminated composite plates using an efficient and simple higher order shear deformation theory", Mech. Indus., 17(5), 512. https://doi.org/10.1051/meca/2015112.
- Aghazadeh, R., Dag, S. and Cigeroglu, E. (2018), "Thermal effect on bending, buckling and free vibration of functionally graded rectangular micro-plates possessing a variable length scale parameter", Microsyst. Technol., 24, 3549-3572. https://doi.org/10.1007/s00542-018-3773-x.
- Akavci, S.S. (2007), "Buckling and free vibration analysis of symmetric and antisymmetric laminated composite plates on an elastic foundation", J. Reinf. Plast. Compos., 26(18), 1907-1919. https://doi.org/10.1177/0731684407081766.
- Akavci, S.S. and Tanrikulu, A.H. (2008), "Buckling and free vibration analyses of laminated composite plates by using two new hyperbolic shear-deformation theories", Mech. Compos. Mater., 44, 145-154. https://doi.org/10.1007/s11029-008-9004-2.
- Arpanahi, R.A., Abdehvand, A.Z., Sheykhi, M., Eskandari, A., Mohammadi, B. and Hashemi, S.H. (2023), "Investigation of the effect of viscosity and fluid flow on buckling behaviour of non-local nanoplate with surface energy", J. Eng., 2023(6), e12286. https://doi.org/10.1049/tje2.12286.
- Arpanahi, R.A., Eskandari, A., Hosseini-Hashemi, S., Taherkhani, M. and Hashemi, S.H. (2024), "Surface energy effect on free vibration characteristics of nano-plate submerged in viscous fluid", J. Vib. Eng. Technol., 12(1), 67-76. https://doi.org/10.1007/s42417-022-00828-x.
- Arpanahi, R.A., Eskandari, A., Mohammadi, B. and Hashemi, S.H. (2023), "Study on the effect of viscosity and fluid flow on buckling behavior of nanoplate with surface energy", Result. Eng., 18, 101078. https://doi.org/10.1016/j.rineng.2023.101078.
- Aydogdu, M. and Ece, M.C. (2006), "Buckling and vibration of non-ideal simply supported rectangular isotropic plates", Mech. Res. Commun., 33(4), 532-540. https://doi.org/10.1016/j.mechrescom.2005.08.002.
- Belkhodja, Y., Belkhodja, M.E.A., Fekirini, H. and Ouinas, D. (2023), "New quasi-three-, and two-dimensional trigonometric-cubic monomial HSDT for thermal buckling and thermomechanical bending analyses of FGM symmetrical/nonsymmetrical sandwich plates with hard/soft core", Compos. Struct., 304, 116402. https://doi.org/10.1016/j.compstruct.2022.116402.
- Bennaceur, M.A. and Xu, Y.M. (2019), "Buckling analysis and free vibration of composite laminates using natural element method", AIAA J., 57(3), 1303-1311. https://doi.org/10.2514/1.j057621.
- Bouazza, M., Lairedj, A. and Benseddiqd, N. (2016), "Buckling analysis of symmetrically-laminated plates using Refined Theory including curvature effects", J. Mech. Eng. (JMechE), 13(2), 39-59.
- Cho, J.R. (2022), "Thermal buckling analysis of metal-ceramic functionally graded plates by natural element method", Struct. Eng. Mech., 84(6), 723-731. https://doi.org/10.12989/sem.2022.84.6.723.
- Civalek, O., Dastjerdi, S. and Akgoz, B. (2022), "Buckling and free vibrations of CNT-reinforced cross-ply laminated composite plates", Mech. Bas. Des. Struct. Mach., 50(6), 1914-1931. https://doi.org/10.1080/15397734.2020.1766494.
- Ebrahimi, F. and Barati, M.R. (2016), "Thermal buckling analysis of size-dependent FG nanobeams based on the third-order shear deformation beam theory", Acta Mechanica Solida Sinica, 29(5), 547-554. https://doi.org/10.1016/S0894-9166(16)30272-5
- Eskandari, A., Ahmadi Arpanahi, R., Daneh-Dezfuli, A., Mohammadi, B. and Hosseini Hashemi, S. (2023), "Investigation of vibration of the nano rotating blade coupled with viscous fluid medium by considering the nonlocal elastic theory", J. Low Freq. Noise, Vib. Active Control, 14613484231216229. https://doi.org/10.1177/14613484231216229.
- Fazzolari, F.A. and Carrera, E. (2011), "Advanced variable kinematics Ritz and Galerkin formulations for accurate buckling and vibration analysis of anisotropic laminated composite plates", Compos. Struct., 94(1), 50-67. https://doi.org/10.1016/j.compstruct.2011.07.018.
- Hadji, L., Bernard, F., Madan, R., Alnujaie, A. and Ghazwani, M.H. (2023), "Bending and buckling of porous multidirectional functionality graded sandwich plate", Struct. Eng. Mech., 85(2), 233-246. https://doi.org/10.12989/sem.2023.85.2.233.
- Ifayefunmi, O. and Fadzullah, S.S.M. (2017), "Buckling behaviour of imperfect axially compressed cylinder with an axial crack", Int. J. Autom. Mech. Eng., 14(1), 2180-1606. https://doi.org/10.15282/ijame.14.1.2017.3.0313.
- Jafari, A.A. and Eftekhari, S.A. (2011), "An efficient mixed methodology for free vibration and buckling analysis of orthotropic rectangular plates", Appl. Math. Comput., 218(6), 2670-2692. https://doi.org/10.1016/j.amc.2011.08.008.
- Jones, R.M. (2018), Mechanics of Composite Materials, CRC Press.
- Kaw, A.K. (2005), Mechanics of Composite Materials, CRC Press.
- Khazaal, D.S., Al-Khafaji, H.M. and Abdulsahib, I.A. (2021), "Holes' parameters analysis of a perforated thin-walled lipped beam buckled under a bending load", Int. J. Autom. Mech. Eng., 18(3), 8927-8940. https://doi.org/10.15282/ijame.18.3.2021.07.0684.
- Khdeir, A.A. and Librescu, L. (1988), "Analysis of symmetric cross-ply laminated elastic plates using a higher-order theory: Part II-Buckling and free vibration", Compos. Struct., 9(4), 259-277. https://doi.org/10.1016/0263-8223(88)90048-7.
- Kurpa, L.V. and Shmatko, T.V. (2021), "Buckling and free vibration analysis of functionally graded sandwich plates and shallow shells by the Ritz method and the R-functions theory", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 235(20), 4582-4593. https://doi.org/10.1177/0954406220936304.
- Lopatin, A.V. and Morozov, E.V. (2021), "Buckling of compressed rectangular orthotropic plate resting on elastic foundation with nonlinear change of transverse displacement over the thickness", Compos. Struct., 261, 113535. https://doi.org/10.1016/j.compstruct.2020.113535.
- Reddy, J.N. (2006), Theory and Analysis of Elastic Plates and Shells, CRC Press.
- Sah, S.K. and Ghosh, A. (2022), "Influence of porosity distribution on free vibration and buckling analysis of multidirectional functionally graded sandwich plates", Compos. Struct., 279, 114795. https://doi.org/10.1016/j.compstruct.2021.114795.
- Salloomi, K.N., Sabri, L.A., Hamad, Y.M. and Al-Sumaidae, S. (2019), "Nonlinear buckling analysis of steel cylindrical shell with elliptical cut-out subjected to longitudinal compressive load", Int. J. Autom. Mech. Eng., 16(2), 6723-6737. https://doi.org/10.15282/ijame.16.2.2019.19.0506
- Sheykhi, M., Eskandari, A., Ghafari, D., Arpanahi, R.A., Mohammadi, B. and Hashemi, S.H. (2023), "Investigation of fluid viscosity and density on vibration of nano beam submerged in fluid considering nonlocal elasticity theory", Alex. Eng. J., 65, 607-614. https://doi.org/10.1016/j.aej.2022.10.016.
- Shojaeefard, M.H., Googarchin, H.S., Ghadiri, M. and Mahinzare, M. (2017), "Micro temperature-dependent FG porous plate: Free vibration and thermal buckling analysis using modified couple stress theory with CPT and FSDT", Appl. Math. Model., 50, 633-655. https://doi.org/10.1016/j.apm.2017.06.022.
- Soleimanian, S., Davar, A., Eskandari Jam, J., Zamani, M.R. and Heydari Beni, M. (2020), "Thermal buckling and thermal induced free vibration analysis of perforated composite plates: a mathematical model", Mech. Adv. Compos. Struct., 7(1), 15-23. https://doi.org/10.22075/macs.2019.16556.1181.
- Stanley, E.I. (2018), "Baxial buckling coefficients of thin rectangular isotropic plates, having one edge simply supported and the other edges clamped", Int. J. Scientif. Eng. Res., 9(7), 1.
- Tamrabet, A., Mamen, B., Menasria, A., Bouhadra, A., Tounsi, A., Ghazwani, M.H., ... & Mahmoud, S.R. (2023), "Buckling behaviors of FG porous sandwich plates with metallic foam cores resting on elastic foundation", Struct. Eng. Mech., 85(3), 289-304. https://doi.org/10.12989/sem.2023.85.3.289.
- Trabelsi, S., Zghal, S. and Dammak, F. (2020), "Thermo-elastic buckling and post-buckling analysis of functionally graded thin plate and shell structures", J. Brazil. Soc. Mech. Sci. Eng., 42, 1-22. https://doi.org/10.1007/s40430-020-02314-5.
- Vinson, J.R. (2005), Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials, including Sandwich Construction, Vol. 120, Springer Science & Business Media.
- Xue, J., Wang, Y. and Chen, L. (2020), "Buckling and free vibration of a side-cracked Mindlin plate under axial in-plane load", Arch. Appl. Mech., 90, 1811-1827. https://doi.org/10.1007/s00419-020-01698-z.
- Zhu, Z., Li, X., Chen, Q. and Cai, Y. (2022), "Shear buckling of ship plates with different holes", Mech. Indus., 23, 4. https://doi.org/10.1051/meca/2022004.